CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 2902-2911.DOI: 10.11949/0438-1157.20220320
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Wenxiao XIE1(),Shengkun JIA1,2(),Huishu ZHANG1,2,Yiqing LUO1,2,Xigang YUAN1,2,3()
Received:
2022-03-02
Revised:
2022-05-13
Online:
2022-08-01
Published:
2022-07-05
Contact:
Shengkun JIA,Xigang YUAN
解文潇1(),贾胜坤1,2(),张会书1,2,罗祎青1,2,袁希钢1,2,3()
通讯作者:
贾胜坤,袁希钢
作者简介:
解文潇(1997—),男,硕士研究生,基金资助:
CLC Number:
Wenxiao XIE, Shengkun JIA, Huishu ZHANG, Yiqing LUO, Xigang YUAN. Investigation on mass transfer behavior between floating bubbles and liquid in confined space[J]. CIESC Journal, 2022, 73(7): 2902-2911.
解文潇, 贾胜坤, 张会书, 罗祎青, 袁希钢. 受限空间内浮升气泡与液体间传质行为实验研究[J]. 化工学报, 2022, 73(7): 2902-2911.
Add to citation manager EndNote|Ris|BibTeX
Fig.6 Average final velocity of bubble buoyancy in confined space under different slit widths(a) variation of average final buoyancy velocity of bubbles in confined space with de and its comparison with that in unrestricted space; (b) four measurement results of bubble centroid trajectory when de is 4 mm
Fig.7 Schematic of mass transfer from a rising CO2 bubble to liquid confined in a gap (Pf:inner contour perimeter of bubble;Sp:free contact area;Sf:liquid film area)
Fig.9 (a) Mass transfer rate from rising CO2 bubble to liquid confined in gaps with different widths; (b) Liquid-side mass transfer coefficient from rising CO2 bubble to liquid confined in gaps with different widths
Fig.10 Mass transfer coefficient of liquid film zone (a), mass transfer coefficient of free interface region (b) and bubble aspect ratio E (c) varied with projected area equivalent diameter in confined space
系统类型 | a/(m2/m3) | ||
---|---|---|---|
逆流填料塔[ | 4~20 | 10~350 | 0.04~7.00 |
鼓泡塔[ | 10~40 | 50~600 | 0.5~24.0 |
浸入式和插入式喷射反应堆[ | 1.5~5.0 | 20~50 | 0.03~0.60 |
喷雾柱[ | 12~19 | 75~170 | 1.5~2.2 |
微反应器[ | 40 | 3400 | 30 |
本研究 | 20~50 | 200~600 | 4~30 |
Table 1 Comparison of gas-liquid mass transfer coefficient between confined space and unrestricted space
系统类型 | a/(m2/m3) | ||
---|---|---|---|
逆流填料塔[ | 4~20 | 10~350 | 0.04~7.00 |
鼓泡塔[ | 10~40 | 50~600 | 0.5~24.0 |
浸入式和插入式喷射反应堆[ | 1.5~5.0 | 20~50 | 0.03~0.60 |
喷雾柱[ | 12~19 | 75~170 | 1.5~2.2 |
微反应器[ | 40 | 3400 | 30 |
本研究 | 20~50 | 200~600 | 4~30 |
1 | Ahmed S, Phan A N, Harvey A P. Scale-up of gas-liquid mass transfer in oscillatory multiorifice baffled reactors (OMBRs)[J]. Industrial & Engineering Chemistry Research, 2019, 58(15): 5929-5935. |
2 | Zhang C, Yuan X G, Luo Y Q, et al. Prediction of species concentration distribution using a rigorous turbulent mass diffusivity model for bubble column reactor simulation (part Ⅰ): Application to chemisorption process of CO2 into NaOH solution[J]. Chemical Engineering Science, 2018, 184: 161-171. |
3 | 傅强, 张会书, 胡楠, 等. 水溶解CO2过程界面对流现象的PIV/LIF测量及传质系数预测[J]. 化工学报, 2018, 69(2): 586-594. |
Fu Q, Zhang H S, Hu N, et al. Simultaneous PIV/LIF measurements of interfacial convection during CO2 dissolution in water and prediction of mass transfer coefficient[J]. CIESC Journal, 2018, 69(2): 586-594. | |
4 | 李陆星, 胡楠, 袁希钢. 水吸收CO2过程界面对流的激光诱导荧光观测[J]. 化工学报, 2016, 67(10): 4055-4063. |
Li L X, Hu N, Yuan X G. Measurement using laser induced fluorescence technique for interfacial convection during water-CO2 absorption process[J]. CIESC Journal, 2016, 67(10): 4055-4063. | |
5 | Vandu C O, Liu H, Krishna R. Mass transfer from Taylor bubbles rising in single capillaries[J]. Chemical Engineering Science, 2005, 60(22): 6430-6437. |
6 | Berčič G, Pintar A. The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries[J]. Chemical Engineering Science, 1997, 52(21/22): 3709-3719. |
7 | Yue J, Chen G W, Yuan Q, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J]. Chemical Engineering Science, 2007, 62(7): 2096-2108. |
8 | Kashid M N, Renken A, Kiwi-Minsker L. Gas-liquid and liquid-liquid mass transfer in microstructured reactors[J]. Chemical Engineering Science, 2011, 66(17): 3876-3897. |
9 | Biswas K G, Das G, Ray S, et al. Mass transfer characteristics of liquid-liquid flow in small diameter conduits[J]. Chemical Engineering Science, 2015, 122: 652-661. |
10 | Haase S, Murzin D Y, Salmi T. Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid Taylor flow[J]. Chemical Engineering Research and Design, 2016, 113: 304-329. |
11 | Kreutzer M T, Kapteijn F, Moulijn J A. Shouldn't catalysts shape up? Structured reactors in general and gas-liquid monolith reactors in particular[J]. Catalysis Today, 2006, 111(1/2): 111-118. |
12 | Wang X, Klaasen B, Degrève J, et al. Experimental and numerical study of buoyancy-driven single bubble dynamics in a vertical Hele-Shaw cell[J]. Physics of Fluids, 2014, 26(12): 123303. |
13 | Wang X, Klaasen B, Degrève J, et al. Volume-of-fluid simulations of bubble dynamics in a vertical Hele-Shaw cell[J]. Physics of Fluids, 2016, 28(5): 053304. |
14 | Roig V, Roudet M, Risso F, et al. Dynamics of a high-Reynolds-number bubble rising within a thin gap[J]. Journal of Fluid Mechanics, 2012, 707: 444-466. |
15 | Bouche E, Roig V, Risso F, et al. Homogeneous swarm of high-Reynolds-number bubbles rising within a thin gap (Part 2): Liquid dynamics[J]. Journal of Fluid Mechanics, 2014, 758: 508-521. |
16 | Pavlov L, D'Angelo M V, Cachile M, et al. Kinematics of a bubble freely rising in a thin-gap cell with additional in-plane confinement[J]. Physical Review Fluids, 2021, 6(9): 093605. |
17 | Filella A, Ern P, Roig V. Oscillatory motion and wake of a bubble rising in a thin-gap cell[J]. Journal of Fluid Mechanics, 2015, 778: 60-88. |
18 | Kherbeche A, Mei M, Thoraval M J, et al. Hydrodynamics and gas-liquid mass transfer around a confined sliding bubble[J]. Chemical Engineering Journal, 2020, 386: 121461. |
19 | Felis F, Strassl F, Laurini L, et al. Using a bio-inspired copper complex to investigate reactive mass transfer around an oxygen bubble rising freely in a thin-gap cell[J]. Chemical Engineering Science, 2019, 207: 1256-1269. |
20 | Roudet M, Billet A M, Cazin S, et al. Experimental investigation of interfacial mass transfer mechanisms for a confined high-Reynolds-number bubble rising in a thin gap[J]. AIChE Journal, 2017, 63(6): 2394-2408. |
21 | 张璠玢, 朱春英, 付涛涛, 等. 微通道内离子液体/乙醇混合溶液吸收CO2的传质特性[J]. 化工学报, 2017, 68(2): 601-611. |
Zhang F B, Zhu C Y, Fu T T, et al. Mass transfer performance of CO2 absorption into ionic liquid/ethanol mixture in microchannel[J]. CIESC Journal, 2017, 68(2): 601-611. | |
22 | 马昱刚, 宋绍富. 微通道反应器内CO2传质反应行为研究[J]. 化学工程, 2020, 48(1): 60-63, 73. |
Ma Y G, Song S F. Study on mass transfer reaction behavior of CO2 inmicrochannel reactor[J]. Chemical Engineering (China), 2020, 48(1): 60-63, 73. | |
23 | Calderbank P H, Lochiel A C. Mass transfer coefficients, velocities and shapes of carbon dioxide bubbles in free rise through distilled water[J]. Chemical Engineering Science, 1964, 19(7): 485-503. |
24 | Zhang Z, Zhang H S, Yuan X G, et al. Effective UV-induced fluorescence method for investigating interphase mass transfer of single bubble rising in the Hele-Shaw cell[J]. Industrial & Engineering Chemistry Research, 2020, 59(14): 6729-6740. |
25 | Zhang Z, Fu Q, Zhang H S, et al. Experimental and numerical investigation on interfacial mass transfer mechanism for Rayleigh convection in Hele-Shaw cell[J]. Industrial & Engineering Chemistry Research, 2020, 59(21): 10195-10209. |
26 | Kong G, Buist K A, Peters E A J F, et al. Dual emission LIF technique for pH and concentration field measurement around a rising bubble[J]. Experimental Thermal and Fluid Science, 2018, 93: 186-194. |
27 | Ryan E T, Xiang T, Johnston K P, et al. Absorption and fluorescence studies of acridine in subcritical and supercritical water[J]. The Journal of Physical Chemistry A, 1997, 101(10): 1827-1835. |
28 | Bowen E J, Holder N J, Woodger G B. Hydrogen bonding of excited states[J]. The Journal of Physical Chemistry, 1962, 66(12): 2491-2492. |
29 | Johnson A I, Besik F, Hamielec A E. Mass transfer from a single rising bubble[J]. The Canadian Journal of Chemical Engineering, 1969, 47(6): 559-564. |
30 | Martín M, Montes F J, Galán M A. Mass transfer from oscillating bubbles in bubble column reactors[J]. Chemical Engineering Journal, 2009, 151(1/2/3): 79-88. |
31 | Charpentier J C. Mass-transfer rates in gas-liquid absorbers and reactors[M]//Advances in Chemical Engineering: Volume 11. Amsterdam: Elsevier, 1981: 1-133. |
32 | Timmermann J, Hoffmann M, Schlüter M. Influence of bubble bouncing on mass transfer and chemical reaction[J]. Chemical Engineering & Technology, 2016, 39(10): 1955-1962. |
33 | Kies F K, Benadda B, Otterbein M. Experimental study on mass transfer of a co-current gas-liquid contactor performing under high gas velocities[J]. Chemical Engineering and Processing: Process Intensification, 2004, 43(11): 1389-1395. |
34 | Karamanev D G. Equations for calculation of the terminal velocity and drag coefficient of solid spheres and gas bubbles[J]. Chemical Engineering Communications, 1996, 147(1): 75-84. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[4] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[5] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[6] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[7] | Yang HE, Senhu GAO, Qingyun WU, Mingli ZHANG, Tao LONG, Pei NIU, Jinghui GAO, Yingqi MENG. Numerical study on heat and mass transfer characteristics of straight slotted fins under wet conditions [J]. CIESC Journal, 2023, 74(3): 1073-1081. |
[8] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[9] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[10] | Hao ZHANG, Ziyue WANG, Yujie CHENG, Xiaohui HE, Hongbing JI. Progress in the mass production of single-atom catalysts [J]. CIESC Journal, 2023, 74(1): 276-289. |
[11] | Yuelin WANG, Wei CHAO, Xiaocheng LAN, Zhipeng MO, Shuhuan TONG, Tiefeng WANG. Review of ethanol production via biological syngas fermentation [J]. CIESC Journal, 2022, 73(8): 3448-3460. |
[12] | Kaiyue WANG, Yongli MA, Chen LI, Mingyan LIU. Gas-liquid mass transfer coefficients in the gas-liquid-solid micro-fluidized beds [J]. CIESC Journal, 2022, 73(8): 3529-3540. |
[13] | Zhenyu LIU. Origin of low productivity of underground coal gasification: diffusion and reaction in stagnant boundary layer and gasification tunnel [J]. CIESC Journal, 2022, 73(8): 3299-3306. |
[14] | Lin WEI, Jian GUO, Zihao LIAO, Dafalla Ahmed Mohmed, Fangming JIANG. Influence of air flow rate on the performance of air cooled hydrogen fuel cell stack [J]. CIESC Journal, 2022, 73(7): 3222-3231. |
[15] | Pan HUANG, Cheng LIAN, Honglai LIU. Heat-mass transfer in real porous electrode based on simulated annealing algorithm [J]. CIESC Journal, 2022, 73(6): 2529-2542. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||