1 |
Nabavi S M, Šamec D, Tomczyk M, et al. Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering[J]. Biotechnology Advances, 2020, 38: 107316.
|
2 |
杨怡萌, 陈星宇, 吴娅, 等. 蒲公英黄酮抗氧化活性的构效关系分析[J]. 化学通报, 2020, 83(11): 1031-1037.
|
|
Yang Y M, Chen X Y, Wu Y, et al. Structure and antioxidant activities relationship of dandelion flavonoids[J]. Chemistry, 2020, 83(11): 1031-1037.
|
3 |
Akram M, Rasool A, An T, et al. Metabolic engineering of Yarrowia lipolytica for liquiritigenin production[J]. Chemical Engineering Science, 2021, 230: 116177.
|
4 |
Zhou Z G, Li D D, Chen Y, et al. Discussion on the structural modification and antitumor activity of flavonoids[J]. Current Topics in Medicinal Chemistry, 2022: 2022Mar8.
|
5 |
李春, 孙文涛, 刘天罡, 等. 天然产物:健康与生态的守护神[J]. 合成生物学, 2021, 2(5): 663-665.
|
|
Li C, Sun W T, Liu T G, et al. Natural products: patron saint of health and ecology [J]. Synthetic Biology Journal, 2021, 2(5): 663-665.
|
6 |
Gulcin İ. Antioxidants and antioxidant methods: an updated overview[J]. Archives of Toxicology, 2020, 94(3): 651-715.
|
7 |
Lin Y H, Shen X L, Yuan Q P, et al. Microbial biosynthesis of the anticoagulant precursor 4-hydroxycoumarin[J]. Nature Communications, 2013, 4: 2603.
|
8 |
Song W, Qiao X, Chen K, et al. Biosynthesis-based quantitative analysis of 151 secondary metabolites of licorice to differentiate medicinal Glycyrrhiza Species and their hybrids[J]. Analytical Chemistry, 2017, 89(5): 3146-3153.
|
9 |
Su X Q, Song Y L, Zhang J, et al. Dihydrochalcones and homoisoflavanes from the red resin of Dracaena cochinchinensis (Chinese dragon’s blood)[J]. Fitoterapia, 2014, 99: 64-71.
|
10 |
Liu C D, Weir D, Busse P, et al. The flavonoid 7,4'-dihydroxyflavone inhibits MUC5AC gene expression, production, and secretion via regulation of NF-κB, STAT6, and HDAC2[J]. Phytotherapy Research, 2015, 29(6): 925-932.
|
11 |
Liu C D, Yang N, Chen X K, et al. The flavonoid 7,4'-dihydroxyflavone prevents dexamethasone paradoxical adverse effect on eotaxin production by human fibroblasts[J]. Phytotherapy Research, 2017, 31(3): 449-458.
|
12 |
Chávez-González M L, Sepúlveda L, Verma D K, et al. Conventional and emerging extraction processes of flavonoids[J]. Processes, 2020, 8(4): 434.
|
13 |
Murti Y, Pathak D, Pathak K. Green chemistry approaches to the synthesis of flavonoids[J]. Current Organic Chemistry, 2021, 25(17): 2005-2027.
|
14 |
Lv Y K, Marsafari M, Koffas M, et al. Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis[J]. ACS Synthetic Biology, 2019, 8(11): 2514-2523.
|
15 |
Zhao M T, Hong X L, Abdullah, et al. Rapid biosynthesis of phenolic glycosides and their derivatives from biomass-derived hydroxycinnamates[J]. Green Chemistry, 2021, 23(2): 838-847.
|
16 |
任师超, 孙秋艳, 冯旭东, 等. 微生物细胞工厂合成五环三萜皂苷类化合物[J]. 合成生物学, 2022, 3(1): 168-183.
|
|
Ren S C, Sun Q Y, Feng X D, et al. Biosynthesis of pentacyclic triterpenoid saponins in microbial cell factories[J]. Synthetic Biology Journal, 2022, 3(1): 168-183.
|
17 |
Sun W T, Xue H J, Liu H, et al. Controlling chemo- and regioselectivity of a plant P450 in yeast cell toward rare licorice triterpenoid biosynthesis[J]. ACS Catalysis, 2020, 10(7): 4253-4260.
|
18 |
孙文涛, 张昕哲, 万盛通, 等. Ⅱ型细胞色素P450酶氧化β-香树脂醇的选择性调控研究[J]. 合成生物学, 2021, 2(5): 804-814.
|
|
Sun W T, Zhang X Z, Wan S T. Regulation on oxidation selectivity for β-amyrin by Class Ⅱ cytochrome P450 enzymes [J]. Synthetic Biology Journal, 2021, 2(5): 804-814.
|
19 |
成雅琪, 吴静, 刘立明, 等. 生物催化C—N成键反应合成手性胺的研究进展[J]. 化工学报, 2021, 72(1): 205-215.
|
|
Cheng Y Q, Wu J, Liu L M, et al. Advances in the synthesis of chiral amines by biocatalytic C—N bond formation[J]. CIESC Journal, 2021, 72(1): 205-215.
|
20 |
齐娜, 宋伟, 刘立明, 等. 生物催化C—C成键反应及其应用[J]. 化工学报, 2021, 72(1): 216-228.
|
|
Qi N, Song W, Liu L M, et al. Biocatalysis C—C bonding reaction and its application[J]. CIESC Journal, 2021, 72(1): 216-228.
|
21 |
Fliegmann J, Furtwängler K, Malterer G, et al. Flavone synthase Ⅱ (CYP93B16) from soybean (Glycine max L.)[J]. Phytochemistry, 2010, 71(5/6): 508-514.
|
22 |
Wang J Y, Zhang C H, Li Y S. Genome-wide identification and expression profiles of 13 key structural gene families involved in the biosynthesis of rice flavonoid scaffolds[J]. Genes, 2022, 13(3): 410.
|
23 |
Wang Y Y, Shi Y F, Li K Y, et al. Roles of the 2-oxoglutarate-dependent dioxygenase superfamily in the flavonoid pathway: a review of the functional diversity of F3H, FNS I, FLS, and LDOX/ANS[J]. Molecules (Basel, Switzerland), 2021, 26(21): 6745.
|
24 |
Lam P Y, Zhu F Y, Chan W L, et al. Cytochrome P450 93G1 is a flavone synthase Ⅱ that channels flavanones to the biosynthesis of tricin O-linked conjugates in rice[J]. Plant Physiology, 2014, 165(3): 1315-1327.
|
25 |
Kitada C, Gong Z Z, Tanaka Y, et al. Differential expression of two cytochrome P450s involved in the biosynthesis of flavones and anthocyanins in chemo-varietal forms of Perilla frutescens [J]. Plant and Cell Physiology, 2001, 42(12): 1338-1344.
|
26 |
Zhao Q, Zhang Y, Wang G, et al. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis [J]. Science Advances, 2016, 2(4): e1501780.
|
27 |
Wu J, Wang X C, Liu Y, et al. Flavone synthases from Lonicera japonica and L. macranthoides reveal differential flavone accumulation[J]. Scientific Reports, 2016, 6: 19245.
|
28 |
Han X J, Wu Y F, Gao S, et al. Functional characterization of a Plagiochasma appendiculatum flavone synthase Ⅰ showing flavanone 2-hydroxylase activity[J]. FEBS Letters, 2014, 588(14): 2307-2314.
|
29 |
Martens S, Forkmann G, Matern U, et al. Cloning of parsley flavone synthase I[J]. Phytochemistry, 2001, 58(1): 43-46.
|
30 |
Kim J H, Cheon Y M, Kim B G, et al. Analysis of flavonoids and characterization of the OsFNS gene involved in flavone biosynthesis in rice[J]. Journal of Plant Biology, 2008, 51(2): 97-101.
|
31 |
Martens S, Mithöfer A. Flavones and flavone synthases[J]. Phytochemistry, 2005, 66(20): 2399-2407.
|
32 |
Tunyasuvunakool K, Adler J, Wu Z, et al. Highly accurate protein structure prediction for the human proteome[J]. Nature, 2021, 596(7873): 590-596.
|
33 |
Trott O, Olson A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. Journal of Computational Chemistry, 2010, 31(2): 455-461.
|
34 |
Akashi T, Fukuchi-Mizutani M, Aoki T, et al. Molecular cloning and biochemical characterization of a novel cytochrome P450, flavone synthase Ⅱ, that catalyzes direct conversion of flavanones to flavones[J]. Plant & Cell Physiology, 1999, 40(11): 1182-1186.
|
35 |
Martens S, Forkmann G. Cloning and expression of flavone synthase Ⅱ from Gerbera hybrids [J]. The Plant Journal, 1999, 20(5): 611-618.
|
36 |
Li L Y, Cheng H, Gai J Y, et al. Genome-wide identification and characterization of putative cytochrome P450 genes in the model legume Medicago truncatula [J]. Planta, 2007, 226(1): 109-123.
|
37 |
Nakatsuka T, Nishihara M, Mishiba K, et al. Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in Gentian plants[J]. Plant Science, 2005, 168(5): 1309-1318.
|
38 |
Witte S, Moco S, Vervoort J, et al. Recombinant expression and functional characterisation of regiospecific flavonoid glucosyltransferases from Hieracium pilosella L [J]. Planta, 2009, 229(5): 1135-1146.
|
39 |
Hsu Y H, Tagami T, Matsunaga K, et al. Functional characterization of UDP-rhamnose-dependent rhamnosyltransferase involved in anthocyanin modification, a key enzyme determining blue coloration in Lobelia erinus [J]. The Plant Journal, 2017, 89(2): 325-337.
|