CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3433-3447.DOI: 10.11949/0438-1157.20220757
• Reviews and monographs • Previous Articles Next Articles
Wangxin GE1(), Yihua ZHU1, Hongliang JIANG2(), Chunzhong LI1,2()
Received:
2022-05-30
Revised:
2022-07-22
Online:
2022-09-06
Published:
2022-08-05
Contact:
Hongliang JIANG, Chunzhong LI
葛旺鑫1(), 朱以华1, 江宏亮2(), 李春忠1,2()
通讯作者:
江宏亮,李春忠
作者简介:
葛旺鑫(1998—),男,博士研究生,y20200081@mail.ecust.edu.cn
基金资助:
CLC Number:
Wangxin GE, Yihua ZHU, Hongliang JIANG, Chunzhong LI. Research progress on electrolytes for carbon dioxide electroreduction[J]. CIESC Journal, 2022, 73(8): 3433-3447.
葛旺鑫, 朱以华, 江宏亮, 李春忠. 二氧化碳电还原的电解质研究进展[J]. 化工学报, 2022, 73(8): 3433-3447.
Add to citation manager EndNote|Ris|BibTeX
Cation | pKa | ||
---|---|---|---|
Bulk | Cu (Surf) | Ag (Surf) | |
Li+ | 13.6 | 11.64 | 13.16 |
Na+ | 14.2 | 10.26 | 11.44 |
K+ | 14.5 | 7.95 | 8.49 |
Rb+ | 14.6 | 6.97 | 7.23 |
Cs+ | 14.7 | 4.31 | 4.32 |
Table 1 Hydrolysis pKa values of alkali metal cations in bulk solution and on the surface of Cu and Ag electrodes[18]
Cation | pKa | ||
---|---|---|---|
Bulk | Cu (Surf) | Ag (Surf) | |
Li+ | 13.6 | 11.64 | 13.16 |
Na+ | 14.2 | 10.26 | 11.44 |
K+ | 14.5 | 7.95 | 8.49 |
Rb+ | 14.6 | 6.97 | 7.23 |
Cs+ | 14.7 | 4.31 | 4.32 |
Fig.8 Suggested reaction mechanism for the disproportionation to carbonate and carbon monoxide (above) and the dimerization to oxalate (below) in aprotic media[86]
1 | Earth System Research Laboratory. Monthly Average Mauna Loa CO2 [OL]. [2022-05-05] . |
2 | Tan X Y, Yu C, Ren Y W, et al. Recent advances in innovative strategies for the CO2 electroreduction reaction[J]. Energy & Environmental Science, 2021, 14(2): 765-780. |
3 | Wang G X, Chen J X, Ding Y C, et al. Electrocatalysis for CO2 conversion: from fundamentals to value-added products[J]. Chemical Society Reviews, 2021, 50(8): 4993-5061. |
4 | Aomchad V, Cristòfol À, Della Monica F, et al. Recent progress in the catalytic transformation of carbon dioxide into biosourced organic carbonates[J]. Green Chemistry, 2021, 23(3): 1077-1113. |
5 | Martínez N P, Isaacs M, Nanda K K. Paired electrolysis for simultaneous generation of synthetic fuels and chemicals[J]. New Journal of Chemistry, 2020, 44(15): 5617-5637. |
6 | Zhong Y, Wang S, Li M, et al. Rational design of copper-based electrocatalysts and electrochemical systems for CO2 reduction: from active sites engineering to mass transfer dynamics[J]. Materials Today Physics, 2021, 18: 100354. |
7 | Wu Z Z, Gao F Y, Gao M R. Regulating the oxidation state of nanomaterials for electrocatalytic CO2 reduction[J]. Energy & Environmental Science, 2021, 14(3): 1121-1139. |
8 | Liu J L, Guo C X, Vasileff A, et al. Nanostructured 2D materials: prospective catalysts for electrochemical CO2 reduction[J]. Small Methods, 2017, 1(1/2): 1600006. |
9 | Wang Y F, Han P, Lv X M, et al. Defect and interface engineering for aqueous electrocatalytic CO2 reduction[J]. Joule, 2018, 2(12): 2551-2582. |
10 | Hahn C, Jaramillo T F. Using Microenvironments to control reactivity in CO2 electrocatalysis[J]. Joule, 2020, 4(2): 292-294. |
11 | Wagner A, Sahm C D, Reisner E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction[J]. Nature Catalysis, 2020, 3(10): 775-786. |
12 | Edwardes Moore E, Cobb S J, Coito A M, et al. Understanding the local chemical environment of bioelectrocatalysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(4): e2114097119. |
13 | Stern O. Zur theorie der elektrolytischen doppelschicht[J]. Zeitschrift Für Elektrochemie und Angewandte Physikalische Chemie, 1924, 30(21/22): 508–516. |
14 | Pan B B, Wang Y H, Li Y G. Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction[J]. Chem Catalysis, 2022, 2(6): 1267-1276. |
15 | Waegele M M, Gunathunge C M, Li J Y, et al. How cations affect the electric double layer and the rates and selectivity of electrocatalytic processes[J]. The Journal of Chemical Physics, 2019, 151(16): 160902. |
16 | Ringe S, Clark E L, Resasco J, et al. Understanding cation effects in electrochemical CO2 reduction[J]. Energy & Environmental Science, 2019, 12(10): 3001-3014. |
17 | Gu J, Liu S, Ni W Y, et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium[J]. Nature Catalysis, 2022, 5(4): 268-276. |
18 | Singh M R, Kwon Y, Lum Y, et al. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu[J]. Journal of the American Chemical Society, 2016, 138(39): 13006-13012. |
19 | Resasco J, Chen L D, Clark E, et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide[J]. Journal of the American Chemical Society, 2017, 139(32): 11277-11287. |
20 | Li J, Li X, Gunathunge C M, et al. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(19): 9220-9229. |
21 | Resasco J, Lum Y, Clark E, et al. Effects of anion identity and concentration on electrochemical reduction of CO2 [J]. ChemElectroChem, 2018, 5(7): 1064-1072. |
22 | de Salles Pupo M M, Kortlever R. Electrolyte effects on the electrochemical reduction of CO2 [J]. ChemPhysChem, 2019, 20(22): 2926-2935. |
23 | Zhu Q S, Murphy C J, Baker L R. Opportunities for electrocatalytic CO2 reduction enabled by surface ligands[J]. Journal of the American Chemical Society, 2022, 144(7): 2829-2840. |
24 | Li L, Liu Y P, Le J B, et al. Unraveling molecular structures and ion effects of electric double layers at metal water interfaces [J]. Cell Reports Physical Science, 2022, 3(2): 100759. |
25 | Shan W Y, Liu R, Zhao H C, et al. In situ surface-enhanced Raman spectroscopic evidence on the origin of selectivity in CO2 electrocatalytic reduction[J]. ACS Nano, 2020, 14(9): 11363-11372. |
26 | Jin L, Seifitokaldani A. In situ spectroscopic methods for electrocatalytic CO2 reduction[J]. Catalysts, 2020, 10(5): 481. |
27 | Serva A, Salanne M, Havenith M, et al. Size dependence of hydrophobic hydration at electrified gold/water interfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(15): e2023867118. |
28 | Baldelli S. Surface structure at the ionic liquid-electrified metal interface[J]. Accounts of Chemical Research, 2008, 41(3): 421-431. |
29 | Le J B, Fan Q Y, Li J Q, et al. Molecular origin of negative component of Helmholtz capacitance at electrified Pt(111)/water interface[J]. Science Advances, 2020, 6(41): eabb1219. |
30 | Baldelli S. Probing electric fields at the ionic liquid-electrode interface using sum frequency generation spectroscopy and electrochemistry[J]. The Journal of Physical Chemistry B, 2005, 109(27): 13049-13051. |
31 | Jouny M, Luc W, Jiao F. High-rate electroreduction of carbon monoxide to multi-carbon products[J]. Nature Catalysis, 2018, 1(10): 748-755. |
32 | Pérez-Gallent E, Marcandalli G, Figueiredo M C, et al. Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes[J]. Journal of the American Chemical Society, 2017, 139(45): 16412-16419. |
33 | Gunathunge C M, Ovalle V J, Waegele M M. Probing promoting effects of alkali cations on the reduction of CO at the aqueous electrolyte/copper interface[J]. Physical Chemistry Chemical Physics: PCCP, 2017, 19(44): 30166-30172. |
34 | Hussain G, Pérez-Martínez L, Le J B, et al. How cations determine the interfacial potential profile: relevance for the CO2 reduction reaction[J]. Electrochimica Acta, 2019, 327: 135055. |
35 | Monteiro M C O, Dattila F, Hagedoorn B, et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution[J]. Nature Catalysis, 2021, 4(8): 654-662. |
36 | Kim H, Park H S, Hwang Y J, et al. Surface-morphology-dependent electrolyte effects on gold-catalyzed electrochemical CO2 reduction[J]. The Journal of Physical Chemistry C, 2017, 121(41): 22637-22643. |
37 | Briega-Martos V, Sarabia F J, Climent V, et al. Cation effects on interfacial water structure and hydrogen peroxide reduction on Pt(111)[J]. ACS Measurement Science Au, 2021, 1(2): 48-55. |
38 | Wang Y H, Zheng S S, Yang W M, et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water[J]. Nature, 2021, 600(7887): 81-85. |
39 | Schizodimou A, Kyriacou G. Acceleration of the reduction of carbon dioxide in the presence of multivalent cations[J]. Electrochimica Acta, 2012, 78: 171-176. |
40 | Monteiro M C O, Dattila F, López N, et al. The role of cation acidity on the competition between hydrogen evolution and CO2 reduction on gold electrodes[J]. Journal of the American Chemical Society, 2022, 144(4): 1589-1602. |
41 | Moradzaman M, Mul G. Optimizing CO coverage on rough copper electrodes: effect of the partial pressure of CO and electrolyte anions (pH) on selectivity toward ethylene[J]. The Journal of Physical Chemistry C, 2021, 125(12): 6546-6554. |
42 | Dunwell M, Lu Q, Heyes J M, et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold[J]. Journal of the American Chemical Society, 2017, 139(10): 3774-3783. |
43 | Dunwell M, Yang X, Setzler B P, et al. Examination of near-electrode concentration gradients and kinetic impacts on the electrochemical reduction of CO2 using surface-enhanced infrared spectroscopy[J]. ACS Catalysis, 2018, 8(5): 3999-4008. |
44 | Wuttig A, Yoon Y, Ryu J, et al. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction[J]. Journal of the American Chemical Society, 2017, 139(47): 17109-17113. |
45 | Gutiérrez-Sánchez O, Daems N, Offermans W, et al. The inhibition of the proton donor ability of bicarbonate promotes the electrochemical conversion of CO2 in bicarbonate solutions[J]. Journal of CO2 Utilization, 2021, 48: 101521. |
46 | Jackson M N, Jung O, Lamotte H C, et al. Donor-dependent promotion of interfacial proton-coupled electron transfer in aqueous electrocatalysis[J]. ACS Catalysis, 2019, 9(4): 3737-3743. |
47 | Verma S, Lu X, Ma S C, et al. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(10): 7075-7084. |
48 | Hsieh Y C, Senanayake S D, Zhang Y, et al. Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction[J]. ACS Catalysis, 2015, 5(9): 5349-5356. |
49 | Huang Y, Ong C W, Yeo B S. Effects of electrolyte anions on the reduction of carbon dioxide to ethylene and ethanol on copper (100) and (111) surfaces[J]. ChemSusChem, 2018, 11(18): 3299-3306. |
50 | Gao D F, Sinev I, Scholten F, et al. Selective CO2 electroreduction to ethylene and multicarbon alcohols via electrolyte-driven nanostructuring[J]. Angewandte Chemie International Edition, 2019, 58(47): 17047-17053. |
51 | Garg S, Li M R, Wu Y M, et al. Understanding the effects of anion interactions with Ag electrodes on electrochemical CO2 reduction in choline halide electrolytes[J]. ChemSusChem, 2021, 14(12): 2601-2611. |
52 | Gao D F, Mccrum I T, Deo S, et al. Activity and selectivity control in CO2 electroreduction to multicarbon products over CuO x catalysts via electrolyte design[J]. ACS Catalysis, 2018, 8(11): 10012-10020. |
53 | Ma W C, Xie S J, Liu T T, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C—C coupling over fluorine-modified copper[J]. Nature Catalysis, 2020, 3(6): 478-487. |
54 | Deng B W, Huang M, Zhao X L, et al. Interfacial electrolyte effects on electrocatalytic CO2 reduction[J]. ACS Catalysis, 2021, 12(1): 331-362. |
55 | Verma S, Hamasaki Y, Kim C, et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer[J]. ACS Energy Letters, 2018, 3(1): 193-198. |
56 | Zosel J, Oelßner W, Decker M, et al. The measurement of dissolved and gaseous carbon dioxide concentration[J]. Measurement Science and Technology, 2011, 22(7): 072001. |
57 | Vayenas C G, White R E, Gamboa-Aldeco M E. Modern Aspects of Electrochemistry[M]. New York: Springer New York, 2008. |
58 | Gao D F, Wang J, Wu H H, et al. pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles[J]. Electrochemistry Communications, 2015, 55: 1-5. |
59 | Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1989, 85(8): 2309-2326. |
60 | Hori Y, Takahashi R, Yoshinami Y, et al. Electrochemical reduction of CO at a copper electrode[J]. The Journal of Physical Chemistry B, 1997, 101(36): 7075-7081. |
61 | Gu J, Héroguel F, Luterbacher J, et al. Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO2 reduction[J]. Angewandte Chemie International Edition, 2018, 57(11): 2943-2947. |
62 | Chen C Z, Zhang B, Zhong J H, et al. Selective electrochemical CO2 reduction over highly porous gold films[J]. Journal of Materials Chemistry A, 2017, 5(41): 21955-21964. |
63 | Souza M L, Lima F H B. Dibenzyldithiocarbamate-functionalized small gold nanoparticles as selective catalysts for the electrochemical reduction of CO2 to CO[J]. ACS Catalysis, 2021, 11(19): 12208-12219. |
64 | Zhong H X, Qiu Y L, Li X F, et al. Ordered cone-structured tin directly grown on carbon paper as efficient electrocatalyst for CO2 electrochemical reduction to formate[J]. Journal of Energy Chemistry, 2021, 55: 236-243. |
65 | Mu S J, Li L, Zhao R J, et al. Molecular-scale insights into electrochemical reduction of CO2 on hydrophobically modified Cu surfaces[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 47619-47628. |
66 | Buckley A K, Cheng T, Oh M H, et al. Approaching 100% selectivity at low potential on Ag for electrochemical CO2 reduction to CO using a surface additive[J]. ACS Catalysis, 2021, 11(15): 9034-9042. |
67 | Zhang Z Q, Banerjee S, Thoi V S, et al. Reorganization of interfacial water by an amphiphilic cationic surfactant promotes CO2 reduction[J]. The Journal of Physical Chemistry Letters, 2020, 11(14): 5457-5463. |
68 | Tao Z X, Wu Z S, Wu Y S, et al. Activating copper for electrocatalytic CO2 reduction to formate via molecular interactions[J]. ACS Catalysis, 2020, 10(16): 9271-9275. |
69 | Ge W X, Chen Y X, Fan Y, et al. Dynamically formed surfactant assembly at the electrified electrode-electrolyte interface boosting CO2 electroreduction[J]. Journal of the American Chemical Society, 2022, 144(14): 6613-6622. |
70 | Sarkar S, Maitra A, Banerjee S, et al. Electric fields at metal-surfactant interfaces: a combined vibrational spectroscopy and capacitance study[J]. The Journal of Physical Chemistry B, 2020, 124(7): 1311-1321. |
71 | Banerjee S, Zhang Z Q, Hall A S, et al. Surfactant perturbation of cation interactions at the electrode-electrolyte interface in carbon dioxide reduction[J]. ACS Catalysis, 2020, 10(17): 9907-9914. |
72 | Banerjee S, Han X, Thoi V S. Modulating the electrode-electrolyte interface with cationic surfactants in carbon dioxide reduction[J]. ACS Catalysis, 2019, 9(6): 5631-5637. |
73 | Zhong Y, Xu Y, Ma J, et al. An artificial electrode/electrolyte interface for CO2 electroreduction by cation surfactant self-assembly[J]. Angewandte Chemie (International Ed. in English), 2020, 59(43): 19095-19101. |
74 | Xing Z, Hu L, Ripatti D S, et al. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment[J]. Nature Communications, 2021, 12: 136. |
75 | Xing Z, Hu X, Feng X F. Tuning the microenvironment in gas-diffusion electrodes enables high-rate CO2 electrolysis to formate[J]. ACS Energy Letters, 2021, 6(5): 1694-1702. |
76 | Liang H Q, Zhao S Q, Hu X M, et al. Hydrophobic copper interfaces boost electroreduction of carbon dioxide to ethylene in water[J]. ACS Catalysis, 2021, 11(2): 958-966. |
77 | Wei X, Yin Z L, Lyu K J, et al. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces[J]. ACS Catalysis, 2020, 10(7): 4103-4111. |
78 | Kim C, Eom T, Jee M S, et al. Insight into electrochemical CO2 reduction on surface-molecule-mediated Ag nanoparticles[J]. ACS Catalysis, 2017, 7(1): 779-785. |
79 | Chen X Y, Chen J F, Alghoraibi N M, et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes[J]. Nature Catalysis, 2021, 4(1): 20-27. |
80 | Lin C, Xu Z F, Kong D X, et al. Lysine-functionalized SnO2 for efficient CO2 electroreduction into formate[J]. ChemNanoMat, 2022, 8(5): e202200020. |
81 | Aeshala L M, Uppaluri R, Verma A. Electrochemical conversion of CO2 to fuels: tuning of the reaction zone using suitable functional groups in a solid polymer electrolyte[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(33): 17588-17594. |
82 | de Arquer F P G, Dinh C T, Ozden A, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A·cm-2 [J]. Science, 2020, 367(6478): 661-666. |
83 | Gupta K, Bersani M, Darr J A. Highly efficient electro-reduction of CO2 to formic acid by nano-copper[J]. Journal of Materials Chemistry A, 2016, 4(36): 13786-13794. |
84 | Yan Z F, Hitt J L, Zeng Z C, et al. Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer[J]. Nature Chemistry, 2021, 13(1): 33-40. |
85 | Kim C, Bui J C, Luo X Y, et al. Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings[J]. Nature Energy, 2021, 6(11): 1026-1034. |
86 | Kaiser U, Heitz E. Zum Mechanismus der elektrochemischen Dimerisierung von CO2 zu Oxalsäure[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1973, 77(10/11): 818-823. |
87 | Gennaro A, Isse A A, Vianello E. Solubility and electrochemical determination of CO2 in some dipolar aprotic solvents[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 289(1): 203-215. |
88 | Aljabour A, Coskun H, Apaydin D H, et al. Nanofibrous cobalt oxide for electrocatalysis of CO2 reduction to carbon monoxide and formate in an acetonitrile-water electrolyte solution[J]. Applied Catalysis B: Environmental, 2018, 229: 163-170. |
89 | Kaneco S, Katsumata H, Suzuki T, et al. Electrochemical reduction of CO2 to methane at the Cu electrode in methanol with sodium supporting salts and its comparison with other alkaline salts[J]. Energy & Fuels, 2006, 20(1): 409-414. |
90 | Kaneco S, Iiba K, Katsumata H, et al. Effect of sodium cation on the electrochemical reduction of CO2 at a copper electrode in methanol[J]. Journal of Solid State Electrochemistry, 2007, 11(4): 490-495. |
91 | Berto T C, Zhang L H, Hamers R J, et al. Electrolyte dependence of CO2 electroreduction: tetraalkylammonium ions are not electrocatalysts[J]. ACS Catalysis, 2015, 5(2): 703-707. |
92 | Chu A T, Surendranath Y. Aprotic solvent exposes an altered mechanism for copper-catalyzed ethylene electrosynthesis[J]. Journal of the American Chemical Society, 2022, 144(12): 5359-5365. |
93 | Cui Y D, He B, Liu X M, et al. Ionic liquids-promoted electrocatalytic reduction of carbon dioxide[J]. Industrial & Engineering Chemistry Research, 2020, 59(46): 20235-20252. |
94 | Cadena C, Anthony J L, Shah J K, et al. Why is CO2 so soluble in imidazolium-based ionic liquids?[J]. Journal of the American Chemical Society, 2004, 126(16): 5300-5308. |
95 | Tan X X, Sun X F, Han B X. Ionic liquid-based electrolytes for CO2 electroreduction and CO2 electroorganic transformation[J]. National Science Review, 2021, 9(4): nwab022. |
96 | Lim H-K, Kim H. The mechanism of room-temperature ionic-liquid-based electrochemical CO2 reduction: a review[J]. Molecules (Basel, Switzerland), 2017, 22(4): E536. |
97 | Alvarez-Guerra M, Albo J, Alvarez-Guerra E, et al. Ionic liquids in the electrochemical valorisation of CO2 [J]. Energy & Environmental Science, 2015, 8(9): 2574-2599. |
98 | Rosen B A, Salehi-Khojin A, Thorson M R, et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials[J]. Science, 2011, 334(6056): 643-644. |
99 | Barrosse-Antle L E, Compton R G. Reduction of carbon dioxide in 1-butyl-3-methylimidazolium acetate[J]. Chemical Communications (Cambridge, England), 2009, 25: 3744-3746. |
100 | Kumar B, Asadi M, Pisasale D, et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction[J]. Nature Communications, 2013, 4: 2819. |
101 | Liu S B, Tao H B, Liu Q, et al. Rational design of silver sulfide nanowires for efficient CO2 electroreduction in ionic liquid[J]. ACS Catalysis, 2018, 8(2): 1469-1475. |
102 | Yu S, Jain P K. Plasmonic photosynthesis of C1—C3 hydrocarbons from carbon dioxide assisted by an ionic liquid[J]. Nature Communications, 2019, 10: 2022. |
103 | Zhu P, Wang H T. High-purity and high-concentration liquid fuels through CO2 electroreduction[J]. Nature Catalysis, 2021, 4(11): 943-951. |
104 | Xia C, Zhu P, Jiang Q, et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices[J]. Nature Energy, 2019, 4(9): 776-785. |
105 | Zheng T T, Zhang M L, Wu L H, et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering[J]. Nature Catalysis, 2022, 5(5): 388-396. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[3] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[6] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[7] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[8] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[9] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[10] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[11] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[12] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[13] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[14] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[15] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||