CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 4079-4086.DOI: 10.11949/0438-1157.20220470
• Energy and environmental engineering • Previous Articles Next Articles
Wanchen ZHANG(), Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU()
Received:
2022-04-01
Revised:
2022-06-30
Online:
2022-10-09
Published:
2022-09-05
Contact:
Tenglong ZHU
通讯作者:
朱腾龙
作者简介:
张婉晨(2000—),女,硕士研究生,1531025188@qq.com
基金资助:
CLC Number:
Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry[J]. CIESC Journal, 2022, 73(9): 4079-4086.
张婉晨, 陈晓阳, 吕秋秋, 钟秦, 朱腾龙. Co掺杂SrTi0.3Fe0.7O3-δ 阳极SOFC在化工副产气燃料下的性能及稳定性[J]. 化工学报, 2022, 73(9): 4079-4086.
Add to citation manager EndNote|Ris|BibTeX
化工工艺源 | 副产气组成/%(体积) | 热值(LHV)/(MJ/m3) |
---|---|---|
炼油 | N2 13.1、CO2 0.7、CO 1.3、H2 30.6、CH4 35.1、C2H6 10.9、C3H8 8.3 | 30~32 |
丙烷脱氢 | H2、CO2、CO、CH4、C2H4、C2H6、C3H6、C3H8 | 25~27 |
炼焦工业 | H2 54~60、CH4 19~24、CO、CO2 | 17~19 |
合成氨 | NH3 17.9、H2 46.5、N2 15.1、CH4 46.5、Ar | 13~15 |
碳化硅合成 | CO 70~90、CO2 2~3、H2 1~5、N2 1~3、CH4 2~4 | 10~14 |
Table 1 Composition and heat value of typical by-product gases
化工工艺源 | 副产气组成/%(体积) | 热值(LHV)/(MJ/m3) |
---|---|---|
炼油 | N2 13.1、CO2 0.7、CO 1.3、H2 30.6、CH4 35.1、C2H6 10.9、C3H8 8.3 | 30~32 |
丙烷脱氢 | H2、CO2、CO、CH4、C2H4、C2H6、C3H6、C3H8 | 25~27 |
炼焦工业 | H2 54~60、CH4 19~24、CO、CO2 | 17~19 |
合成氨 | NH3 17.9、H2 46.5、N2 15.1、CH4 46.5、Ar | 13~15 |
碳化硅合成 | CO 70~90、CO2 2~3、H2 1~5、N2 1~3、CH4 2~4 | 10~14 |
编号 | 气体组成 | 比例 |
---|---|---|
1 | H2、CO2、CO | x(CO2)=10%,y(H2)=6%~45 %,z(CO)=100%-x-y |
2 | H2、CO2、CH4 | x(CO2)=10%,y(CH4)=3%~12 %,z(H2)=100%-x-y |
3 | 某化工企业炼油工段副产气 | N2 (13.1%)、CO2 (0.7%)、CO (1.3%)、H2 (30.6%)、CH4 (35.1%)、C2H6 (10.9%)、C3H8 (8.3%) |
Table 2 The compositions of simulated by-product gas and by-product gas in refinery section
编号 | 气体组成 | 比例 |
---|---|---|
1 | H2、CO2、CO | x(CO2)=10%,y(H2)=6%~45 %,z(CO)=100%-x-y |
2 | H2、CO2、CH4 | x(CO2)=10%,y(CH4)=3%~12 %,z(H2)=100%-x-y |
3 | 某化工企业炼油工段副产气 | N2 (13.1%)、CO2 (0.7%)、CO (1.3%)、H2 (30.6%)、CH4 (35.1%)、C2H6 (10.9%)、C3H8 (8.3%) |
Fig.2 Electrochemical performance of STFC cell under simulated by-product gases at 800℃.(a), (b) Current density-voltage-power density (J-V-P) curves of STFC cell under CO2-H2-CO and CO2-H2-CH4 fuels; (c), (e), (d), (f) Electrochemical impedance spectroscopy (EIS) and the corresponding DRT analysis of STFC cell under CO2-H2-CO and CO2-H2-CH4 fuels
1 | 韩敏芳, 彭苏萍. 碳基燃料固体氧化物燃料电池发展前景[J]. 中国工程科学, 2013, 15(2): 4-6, 26. |
Han M F, Peng S P. Prospect of carbon-based solid oxide fuel cells[J]. Engineering Sciences, 2013, 15(2): 4-6, 26. | |
2 | Lai K Y, Manthiram A. Self-regenerating Co-Fe nanoparticles on perovskite oxides as a hydrocarbon fuel oxidation catalyst in solid oxide fuel cells[J]. Chemistry of Materials, 2018, 30(8): 2515-2525. |
3 | 杨晓勤, 肖聪, 杨晓华, 等. 合成氨尾气综合回收副产LNG的研究与实践[J]. 中氮肥, 2015(1): 11-13. |
Yang X Q, Xiao C, Yang X H, et al. Research and practice on comprehensive recovery by-product LNG by synthesis ammonia tail gas[J]. M-Sized Nitrogenous Fertilizer Progress, 2015(1): 11-13. | |
4 | 齐景丽, 孔繁荣. 我国焦炉气化工利用现状及前景展望[J]. 天然气化工(C1化学与化工), 2013, 38(1): 60-64. |
Qi J L, Kong F R. Status and prospect for chemical utilization of coke oven gas in China[J]. Natural Gas Chemical Industry, 2013, 38(1): 60-64. | |
5 | 付鹏兵, 蔡俊艳. 煤制油项目炼油装置副产气回收利用探讨[J]. 山西化工, 2018, 38(3): 85-87. |
Fu P B, Cai J Y. Discussion on recovery and utilization of by-product gas from refining unit of coal-to-oil project [J]. Shanxi Chemical Industry, 2018, 38(3): 85-87. | |
6 | 张炜. 炼厂制氢技术路线选择和成本分析[J]. 化学工程, 2010, 38(10): 141-145. |
Zhang W. Selection of route for hydrogen production in refinery and its cost analysis[J]. Chemical Engineering(China), 2010, 38(10): 141-145. | |
7 | Zhu B, Bai X Y, Chen G X, et al. Fundamental study on biomass-fuelled ceramic fuel cell[J]. International Journal of Energy Research, 2002, 26(1): 57-66. |
8 | Guerra C, Lanzini A, Leone P, et al. Optimization of dry reforming of methane over Ni/YSZ anodes for solid oxide fuel cells[J]. Journal of Power Sources, 2014, 245: 154-163. |
9 | Sameshima S, Furukawa N, Hirata Y, et al. Cell performance of SOFC using CH4-CO2 mixed gases[J]. Ceramics International, 2014, 40(4): 6279-6284. |
10 | Shabri H A, Othman M H D, Mohamed M A, et al. Recent progress in metal-ceramic anode of solid oxide fuel cell for direct hydrocarbon fuel utilization: a review[J]. Fuel Processing Technology, 2021, 212: 106626. |
11 | Singhal S C, Kendall K. High-temperature solid oxide fuel cells: fundamentals, design and applications[J]. Materials Today, 2002, 5(12): 55. |
12 | Maček J, Novosel B, Marinšek M. Ni-YSZ SOFC anodes-Minimization of carbon deposition[J]. Journal of the European Ceramic Society, 2007, 27(2/3): 487-491. |
13 | Ishihara T. Perovskite Oxide for Solid Oxide Fuel Cells[M]. New York: Springer Science+Business Media, LLC, 2009. |
14 | Fowler D E, Messner A C, Miller E C, et al. Decreasing the polarization resistance of (La,Sr)CrO3- δ solid oxide fuel cell anodes by combined Fe and Ru substitution[J]. Chemistry of Materials, 2015, 27(10): 3683-3693. |
15 | 杜志鸿. 钙钛矿基固体氧化物燃料电池电极材料结构及性能的研究[D]. 北京: 北京科技大学, 2016. |
Du Z H. Struture and properties of perovskite-based electrode materials for solid oxide fuel cell[D]. Beijing: University of Science and Technology Beijing, 2016. | |
16 | Song J N, Zhu T L, Chen X Y, et al. Cobalt and titanium substituted SrFeO3 based perovskite as efficient symmetrical electrode for solid oxide fuel cell[J]. Journal of Materiomics, 2020, 6(2): 377-384. |
17 | Neagu D, Tsekouras G, Miller D N, et al. In situ growth of nanoparticles through control of non-stoichiometry[J]. Nature Chemistry, 2013, 5(11): 916-923. |
18 | Yang C H, Yang Z B, Jin C, et al. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells[J]. Advanced Materials, 2012, 24(11): 1439-1443. |
19 | Kobsiriphat W, Madsen B D, Wang Y, et al. Nickel- and ruthenium-doped lanthanum chromite anodes: effects of nanoscale metal precipitation on solid oxide fuel cell performance[J]. Journal of the Electrochemical Society, 2010, 157(2): B279. |
20 | Bierschenk D M, Potter-Nelson E, Hoel C, et al. Pd-substituted (La,Sr)CrO3– δ -Ce0.9Gd0.1O2- δ solid oxide fuel cell anodes exhibiting regenerative behavior[J]. Journal of Power Sources, 2011, 196(6): 3089-3094. |
21 | Zhu T L, Troiani H, Mogni L V, et al. Exsolution and electrochemistry in perovskite solid oxide fuel cell anodes: role of stoichiometry in Sr(Ti,Fe,Ni)O3 [J]. Journal of Power Sources, 2019, 439: 227077. |
22 | Sun Y F, Li J H, Zeng Y M, et al. A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes[J]. Journal of Materials Chemistry A, 2015, 3(20): 11048-11056. |
23 | Zhang S L, Wang H Q, Lu M Y, et al. Cobalt-substituted SrTi0.3Fe0.7O3- δ : a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells[J]. Energy & Environmental Science, 2018, 11(7): 1870-1879. |
24 | Zhu T L, Troiani H E, Mogni L V, et al. Ni-substituted Sr(Ti,Fe)O3 SOFC anodes: achieving high performance via metal alloy nanoparticle exsolution[J]. Joule, 2018, 2(3): 478-496. |
25 | 朱腾龙. SrFeO3基钙钛矿阳极结构演化、机理及应用研究[D]. 北京: 中国矿业大学(北京), 2016. |
Zhu T L. Structure evolution, mechanism and application of SrFeO3 based perovskite anode[D]. Beijing: China University of Mining & Technology, Beijing, 2016. | |
26 | Nenning A, Volgger L, Miller E, et al. The electrochemical properties of Sr(Ti,Fe)O3- δ for anodes in solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2017, 164(4): F364-F371. |
27 | 倪维婕, 朱腾龙, 陈晓阳, 等. Co/Ni掺杂SrTi0.3Fe0.7O3- δ 钙钛矿电极材料制备及性能[J]. 硅酸盐学报, 2019, 47(3): 313-319. |
Ni W J, Zhu T L, Chen X Y, et al. Fabrication and characterization of Co/Ni substituted SrTi0.3Fe0.7O3- δ perovskite electrode[J]. Journal of the Chinese Ceramic Society, 2019, 47(3): 313-319. | |
28 | Ohnuma I, Enoki H, Ikeda O, et al. Phase equilibria in the Fe-Co binary system[J]. Acta Materialia, 2002, 50(2): 379-393. |
29 | Chen X Y, Ni W J, Wang J, et al. Exploration of Co-Fe alloy precipitation and electrochemical behavior hysteresis using lanthanum and cobalt co-substituted SrFeO3- δ SOFC anode[J]. Electrochimica Acta, 2018, 277: 226-234. |
30 | Wang X X, Wei K W, Yan S L, et al. Efficient and stable conversion of oxygen-bearing low-concentration coal mine methane by the electrochemical catalysis of SOFC anode: from pollutant to clean energy[J]. Applied Catalysis B: Environmental, 2020, 268: 118413. |
31 | Xu C M, Sun W, Ren R Z, et al. A highly active and carbon-tolerant anode decorated with in situ grown cobalt nano-catalyst for intermediate-temperature solid oxide fuel cells[J]. Applied Catalysis B: Environmental, 2021, 282: 119553. |
32 | Hjelm J, Soegaard M, Knibbe R, et al. Electrochemical characterization of planar anode supported SOFC with strontium-doped lanthanum cobalt oxide cathodes[J]. ECS Transactions, 2008, 13(26): 285-299. |
33 | Ebbesen S D, Mogensen M. Kinetics of oxidation of H2 and reduction of H2O in Ni-YSZ based solid oxide cells[J]. ECS Transactions, 2013, 50(49): 167-182. |
34 | Zhu T L, Fowler D E, Poeppelmeier K R, et al. Hydrogen oxidation mechanisms on perovskite solid oxide fuel cell anodes[J]. Journal of the Electrochemical Society, 2016, 163(8): F952-F961. |
35 | Cui X T, Kær S K. Thermodynamic analysis of steam reforming and oxidative steam reforming of propane and butane for hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43(29): 13009-13021. |
36 | Shin T H, Ida S, Ishihara T. Doped CeO2-LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells[J]. Journal of the American Chemical Society, 2011, 133(48): 19399-19407. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[4] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[5] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[6] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[7] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[8] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[9] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[10] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[13] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[14] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[15] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||