CIESC Journal ›› 2023, Vol. 74 ›› Issue (1): 192-204.DOI: 10.11949/0438-1157.20221314
• Reviews and monographs • Previous Articles Next Articles
Received:
2022-10-08
Revised:
2022-12-03
Online:
2023-03-20
Published:
2023-01-05
Contact:
Xianfeng LI
通讯作者:
李先锋
作者简介:
鲁文静(1991—),女,博士,副研究员,luwenjing@dicp.ac.cn
基金资助:
CLC Number:
Wenjing LU, Xianfeng LI. Research process of porous ion conducting membranes for flow batteries[J]. CIESC Journal, 2023, 74(1): 192-204.
鲁文静, 李先锋. 液流电池多孔离子传导膜研究进展[J]. 化工学报, 2023, 74(1): 192-204.
Add to citation manager EndNote|Ris|BibTeX
聚合物 | 制备方法 | 调节参数 | 体系 | 电流密度/(mA/cm2) | 效率/ % | 文献 | |
---|---|---|---|---|---|---|---|
CE | EE | ||||||
PI① | 模板法(β-CD) | — | VFB | 100 | 约100 | >80 | [ |
吡啶功能化的PPEK | VIPS | 温度、相对湿度、暴露时间、 溶剂组成 | VFB | 140 | 97.2 | 81.0 | [ |
PBI | NIPS | 聚合物浓度 | V/MB③ | 40 | 99.45 | 86.10 | [ |
PBI | VIPS | 聚合物浓度、溶剂类型 | VFB | 120 | >98.5 | 81.0 | [ |
PEI | 溶剂蒸发法+NIPS | 溶剂挥发时间、造孔剂含量 | Zn/TEMPO-OH | 20 | >98 | 约77 | [ |
Nafion/PVDF | 模板法(PEG) | Nafion和PEG含量 | VFB | 100 | 96.1 | 83.8 | [ |
PES/SPEEK② | NIPS | SPEEK含量 | ARS/Fe④ | 40 | 98.28 | 85.81 | [ |
PBI | NIPS | 非溶剂浴组成 | VFB | 80 | 99.0 | 91.3 | [ |
SPES | 模板法(IL) | 离子液体含量 | VFB | 100 | 98.8 | 84.1 | [ |
PBI | NIPS | 非溶剂浴组成 | VFB | 80 | 99.3 | 89.9 | [ |
PES/SPEEK | NIPS | 非溶剂浴组成 | VFB | 80 | 98.5 | 90.4 | [ |
PES/SPEEK | 模板法(酚酞) | 模板剂含量 | VFB | 80 | 94.52 | 81.66 | [ |
PBI | VIPS | 制膜厚度 | VFB | 80 | 98.87 | 90.11 | [ |
PES/SPEEK | SIPS | 高沸点溶剂含量 | VFB | 40 | >99 | >92 | [ |
PES | NIPS | 造孔剂含量 | VFB | 80 | 92.4 | 76.1 | [ |
PAN⑤ | NIPS | 溶剂组成 | VFB | 80 | 95 | 约79 | [ |
PBI | 模板法(SiO2) | SiO2含量 | VFB | 80 | 99.5 | 87.9 | [ |
Table 1 Performance comparison of porous ion conducting membranes before and after being optimized
聚合物 | 制备方法 | 调节参数 | 体系 | 电流密度/(mA/cm2) | 效率/ % | 文献 | |
---|---|---|---|---|---|---|---|
CE | EE | ||||||
PI① | 模板法(β-CD) | — | VFB | 100 | 约100 | >80 | [ |
吡啶功能化的PPEK | VIPS | 温度、相对湿度、暴露时间、 溶剂组成 | VFB | 140 | 97.2 | 81.0 | [ |
PBI | NIPS | 聚合物浓度 | V/MB③ | 40 | 99.45 | 86.10 | [ |
PBI | VIPS | 聚合物浓度、溶剂类型 | VFB | 120 | >98.5 | 81.0 | [ |
PEI | 溶剂蒸发法+NIPS | 溶剂挥发时间、造孔剂含量 | Zn/TEMPO-OH | 20 | >98 | 约77 | [ |
Nafion/PVDF | 模板法(PEG) | Nafion和PEG含量 | VFB | 100 | 96.1 | 83.8 | [ |
PES/SPEEK② | NIPS | SPEEK含量 | ARS/Fe④ | 40 | 98.28 | 85.81 | [ |
PBI | NIPS | 非溶剂浴组成 | VFB | 80 | 99.0 | 91.3 | [ |
SPES | 模板法(IL) | 离子液体含量 | VFB | 100 | 98.8 | 84.1 | [ |
PBI | NIPS | 非溶剂浴组成 | VFB | 80 | 99.3 | 89.9 | [ |
PES/SPEEK | NIPS | 非溶剂浴组成 | VFB | 80 | 98.5 | 90.4 | [ |
PES/SPEEK | 模板法(酚酞) | 模板剂含量 | VFB | 80 | 94.52 | 81.66 | [ |
PBI | VIPS | 制膜厚度 | VFB | 80 | 98.87 | 90.11 | [ |
PES/SPEEK | SIPS | 高沸点溶剂含量 | VFB | 40 | >99 | >92 | [ |
PES | NIPS | 造孔剂含量 | VFB | 80 | 92.4 | 76.1 | [ |
PAN⑤ | NIPS | 溶剂组成 | VFB | 80 | 95 | 约79 | [ |
PBI | 模板法(SiO2) | SiO2含量 | VFB | 80 | 99.5 | 87.9 | [ |
基底 | 添加剂 | 修饰方法 | 体系 | 电流密度/(mA/cm2) | 效率/ % | 文献 | |
---|---|---|---|---|---|---|---|
CE | EE | ||||||
PVDF | 2D 蛭石纳米片 | 共混-NIPS | 非水系液流电池① | 2 | 97.9 | 90.6 | [ |
PES/SPEEK | 沸石纳米片 | 共混-NIPS | AZIFB | 80 | 约98.5 | 约81.9 | [ |
PVDF | 磺化SiO2 | 溶胶-凝胶法 | VFB | 60 | 90.3 | 75.6 | [ |
PE | 硅酸镍片空心球 | 一步水热法 | AZIFB | 80 | 98.6 | 88.3 | [ |
PP | MOF | 浸没法 | Li/Fe | 4 | 97.4 | 78.6 | [ |
PTFE | SiO2 | 剪切共混法 | VFB | 50 | 93 | 81 | [ |
PAN | SiO2 | 溶胶-凝胶法 | VFB | 80 | 98 | 约79 | [ |
PES | SPEEK | NIPS | AZIFB | 40 | — | 91.92 | [ |
PP | Nafion | 孔填充法 | Zn/Br | 20 | 94.7 | 82.1 | [ |
CMPSF | 1,4-二氨基丁烷(交联剂) | VIPS-浸泡-交联 | VFB | 80 | >99 | 87 | [ |
CMPSF | 咪唑(交联剂) | VIPS-浸泡-交联 | VFB | 80 | 99 | 86 | [ |
PES | PPY② | 吡咯的原位聚合 | VFB | 80 | 96.30 | 87.20 | [ |
PVDF | PVP | 接枝聚合+交联反应 | VFB | 80 | 94.4 | 83.3 | [ |
PSF | NaSS③ | 接枝 | VFB | 80 | — | 78.4 | [ |
CMPSF | 吡啶 | VIPS-接枝 | VFB | 120 | — | >81 | [ |
PE④ | SPEEK | 浸涂 | VFB | 160 | 99 | 76 | [ |
PES/SPEEK | 聚电解质 | 浸没-溶剂响应 层层自组装 | VFB | 80 | — | >88 | [ |
Table 2 Summary of mixed matrix porous ion conducting membranes for flow batteries
基底 | 添加剂 | 修饰方法 | 体系 | 电流密度/(mA/cm2) | 效率/ % | 文献 | |
---|---|---|---|---|---|---|---|
CE | EE | ||||||
PVDF | 2D 蛭石纳米片 | 共混-NIPS | 非水系液流电池① | 2 | 97.9 | 90.6 | [ |
PES/SPEEK | 沸石纳米片 | 共混-NIPS | AZIFB | 80 | 约98.5 | 约81.9 | [ |
PVDF | 磺化SiO2 | 溶胶-凝胶法 | VFB | 60 | 90.3 | 75.6 | [ |
PE | 硅酸镍片空心球 | 一步水热法 | AZIFB | 80 | 98.6 | 88.3 | [ |
PP | MOF | 浸没法 | Li/Fe | 4 | 97.4 | 78.6 | [ |
PTFE | SiO2 | 剪切共混法 | VFB | 50 | 93 | 81 | [ |
PAN | SiO2 | 溶胶-凝胶法 | VFB | 80 | 98 | 约79 | [ |
PES | SPEEK | NIPS | AZIFB | 40 | — | 91.92 | [ |
PP | Nafion | 孔填充法 | Zn/Br | 20 | 94.7 | 82.1 | [ |
CMPSF | 1,4-二氨基丁烷(交联剂) | VIPS-浸泡-交联 | VFB | 80 | >99 | 87 | [ |
CMPSF | 咪唑(交联剂) | VIPS-浸泡-交联 | VFB | 80 | 99 | 86 | [ |
PES | PPY② | 吡咯的原位聚合 | VFB | 80 | 96.30 | 87.20 | [ |
PVDF | PVP | 接枝聚合+交联反应 | VFB | 80 | 94.4 | 83.3 | [ |
PSF | NaSS③ | 接枝 | VFB | 80 | — | 78.4 | [ |
CMPSF | 吡啶 | VIPS-接枝 | VFB | 120 | — | >81 | [ |
PE④ | SPEEK | 浸涂 | VFB | 160 | 99 | 76 | [ |
PES/SPEEK | 聚电解质 | 浸没-溶剂响应 层层自组装 | VFB | 80 | — | >88 | [ |
基底 | 选择层 | 修饰方法 | 体系 | 电流密度/ (mA/cm2) | 效率/ % | 文献 | |
---|---|---|---|---|---|---|---|
CE | EE | ||||||
PAN | PIM-1 | 刮涂 | VFB | 20 | 97.1 | 89.9 | [ |
PVDF | 氧化石墨烯 | 接枝 | VFB | — | — | — | [ |
PES | 石墨烯 | 卷对卷热释放工艺 | VFB | 40 | 90 | 约83 | [ |
PE | PEG/Nafion | 刮涂 | Zn/Br | 40 | 96.63 | 83.37 | [ |
PE | 全氟磺酸/烷氧基硅烷 | 刮涂 | VFB | 60 | 约95 | 约85 | [ |
Celgard | 蛭石纳米片 | 过滤 | 非水系液流电池① | 2 | 95.3 | 90.1 | [ |
PES/SPEEK | LDH | 喷涂 | AZIFB | 200 | >98 | 约82 | [ |
PES/SPEEK | LDH | 原位水热垂直生长 | AZIFB | 260 | 98.92 | 80.45 | [ |
PE | MEPBr②/Nafion | 刮涂 | Zn/Br | 40 | 97.42 | 85.31 | [ |
PE | MOF | 刮涂 | ZIFB③ | 80 | 94.5 | 86.1 | [ |
PES/SPEEK | 聚酰胺 | 界面聚合 | VFB | 80 | 99.2 | 92.1 | [ |
PES/SPEEK | 氮化硼纳米片 | 喷涂 | AZIFB | 80 | 约98.5 | 约87.6 | [ |
PES/SPEEK | ZSM-35 | 界面聚合 | VFB | 80 | > 99 | >91 | [ |
PVDF | PBI | 喷涂 | VFB | 80 | 98.4 | 85.1 | [ |
PES/SPEEK | 分子筛 | 喷涂 | VFB | 200 | >99 | >81 | [ |
PES/SPEEK | Nafion | 喷涂 | VFB | 80 | 约98 | 86.5 | [ |
Table 3 Summary of composite porous ion conducting membranes for flow batteries
基底 | 选择层 | 修饰方法 | 体系 | 电流密度/ (mA/cm2) | 效率/ % | 文献 | |
---|---|---|---|---|---|---|---|
CE | EE | ||||||
PAN | PIM-1 | 刮涂 | VFB | 20 | 97.1 | 89.9 | [ |
PVDF | 氧化石墨烯 | 接枝 | VFB | — | — | — | [ |
PES | 石墨烯 | 卷对卷热释放工艺 | VFB | 40 | 90 | 约83 | [ |
PE | PEG/Nafion | 刮涂 | Zn/Br | 40 | 96.63 | 83.37 | [ |
PE | 全氟磺酸/烷氧基硅烷 | 刮涂 | VFB | 60 | 约95 | 约85 | [ |
Celgard | 蛭石纳米片 | 过滤 | 非水系液流电池① | 2 | 95.3 | 90.1 | [ |
PES/SPEEK | LDH | 喷涂 | AZIFB | 200 | >98 | 约82 | [ |
PES/SPEEK | LDH | 原位水热垂直生长 | AZIFB | 260 | 98.92 | 80.45 | [ |
PE | MEPBr②/Nafion | 刮涂 | Zn/Br | 40 | 97.42 | 85.31 | [ |
PE | MOF | 刮涂 | ZIFB③ | 80 | 94.5 | 86.1 | [ |
PES/SPEEK | 聚酰胺 | 界面聚合 | VFB | 80 | 99.2 | 92.1 | [ |
PES/SPEEK | 氮化硼纳米片 | 喷涂 | AZIFB | 80 | 约98.5 | 约87.6 | [ |
PES/SPEEK | ZSM-35 | 界面聚合 | VFB | 80 | > 99 | >91 | [ |
PVDF | PBI | 喷涂 | VFB | 80 | 98.4 | 85.1 | [ |
PES/SPEEK | 分子筛 | 喷涂 | VFB | 200 | >99 | >81 | [ |
PES/SPEEK | Nafion | 喷涂 | VFB | 80 | 约98 | 86.5 | [ |
修饰策略 | 优点 | 缺点 |
---|---|---|
调节成膜参数 | 方法简单 | 影响因素众多;最佳条件需要通过大量实验探索;效果有限 |
制备混合基质多孔离子传导膜 | 方法成熟、简单有效;可选择的添加剂多;兼具基体 和添加剂优点,综合性能优异 | 膜阻抗容易升高;必须保证基底和添加剂之间的 相容性;必须保证添加剂在基底中的均匀分布; 添加剂和基底之间可能存在缺陷 |
制备复合多孔离子传导膜 | 方法成熟有效;可选择的无机纳米颗粒和聚合物 种类多;选择层和支撑层可以分别调控 | 具有额外的界面阻抗;电池长期运行过程中选择层 可能脱落 |
后处理 | 方法简单 | 影响因素众多;过度的溶胀或收缩会影响膜的 稳定性;研究不够广泛 |
Table 4 Features of different modifying strategies of porous ion conducting membranes
修饰策略 | 优点 | 缺点 |
---|---|---|
调节成膜参数 | 方法简单 | 影响因素众多;最佳条件需要通过大量实验探索;效果有限 |
制备混合基质多孔离子传导膜 | 方法成熟、简单有效;可选择的添加剂多;兼具基体 和添加剂优点,综合性能优异 | 膜阻抗容易升高;必须保证基底和添加剂之间的 相容性;必须保证添加剂在基底中的均匀分布; 添加剂和基底之间可能存在缺陷 |
制备复合多孔离子传导膜 | 方法成熟有效;可选择的无机纳米颗粒和聚合物 种类多;选择层和支撑层可以分别调控 | 具有额外的界面阻抗;电池长期运行过程中选择层 可能脱落 |
后处理 | 方法简单 | 影响因素众多;过度的溶胀或收缩会影响膜的 稳定性;研究不够广泛 |
1 | Tan K M, Babu T S, Ramachandaramurthy V K, et al. Empowering smart grid: a comprehensive review of energy storage technology and application with renewable energy integration[J]. Journal of Energy Storage, 2021, 39: 102591. |
2 | Dowling J A, Rinaldi K Z, Ruggles T H, et al. Role of long-duration energy storage in variable renewable electricity systems[J]. Joule, 2020, 4(9): 1907-1928. |
3 | Shan R, Reagan J, Castellanos S, et al. Evaluating emerging long-duration energy storage technologies[J]. Renewable and Sustainable Energy Reviews, 2022, 159: 112240. |
4 | Sepulveda N A, Jenkins J D, Edington A, et al. The design space for long-duration energy storage in decarbonized power systems[J]. Nature Energy, 2021, 6(5): 506-516. |
5 | Zhang C K, Li X F. Perspective on organic flow batteries for large-scale energy storage[J]. Current Opinion in Electrochemistry, 2021, 30: 100836. |
6 | Kwabi D G, Ji Y, Aziz M J. Electrolyte lifetime in aqueous organic redox flow batteries: a critical review[J]. Chemical Reviews, 2020, 120(14): 6467-6489. |
7 | Zhang H M, Lu W J, Li X F. Progress and perspectives of flow battery technologies[J]. Electrochemical Energy Reviews, 2019, 2(3): 492-506. |
8 | Luo J, Hu B, Hu M W, et al. Status and prospects of organic redox flow batteries toward sustainable energy storage[J]. ACS Energy Letters, 2019, 4(9): 2220-2240. |
9 | Thaller L H. Electrically rechargeable redox flow cells[C]//9th Intersociety Energy Conversion Engineering Conference Proceedings. New York: American Society of Mechanical Engineers, 1974: 924-928. |
10 | Chalamala B R, Soundappan T, Fisher G R, et al. Redox flow batteries: an engineering perspective[J]. Proceedings of the IEEE, 2014, 102(6): 976-999. |
11 | Yang Z G, Zhang J L, Kintner-Meyer M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
12 | Chen Q R, Lv Y G, Yuan Z Z, et al. Organic electrolytes for pH-neutral aqueous organic redox flow batteries[J]. Advanced Functional Materials, 2022, 32(9): 2108777. |
13 | Liu Y Z, Chen Q, Sun P, et al. Organic electrolytes for aqueous organic flow batteries[J]. Materials Today Energy, 2021, 20: 100634. |
14 | Machado C A, Brown G O, Yang R D, et al. Redox flow battery membranes: improving battery performance by leveraging structure-property relationships[J]. ACS Energy Letters, 2021, 6(1): 158-176. |
15 | Li X F, Zhang H M, Mai Z S, et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications[J]. Energy & Environmental Science, 2011, 4(4): 1147-1160. |
16 | Lu W J, Yuan Z Z, Zhao Y Y, et al. Porous membranes in secondary battery technologies[J]. Chemical Society Reviews, 2017, 46(8): 2199-2236. |
17 | Ran J, Wu L, He B, et al. Ion exchange membranes: new developments and applications[J]. Journal of Membrane Science, 2017, 522: 267-291. |
18 | Pärnamäe R, Mareev S, Nikonenko V, et al. Bipolar membranes: a review on principles, latest developments, and applications[J]. Journal of Membrane Science, 2021, 617: 118538. |
19 | Yuan Z Z, Li X F, Duan Y Q, et al. Highly stable membranes based on sulfonated fluorinated poly(ether ether ketone)s with bifunctional groups for vanadium flow battery application[J]. Polymer Chemistry, 2015, 6(30): 5385-5392. |
20 | Yuan Z Z, Li X F, Zhao Y Y, et al. Mechanism of polysulfone-based anion exchange membranes degradation in vanadium flow battery[J]. ACS Applied Materials & Interfaces, 2015, 7(34): 19446-19454. |
21 | Yuan Z Z, Li X F, Duan Y Q, et al. Application and degradation mechanism of polyoxadiazole based membrane for vanadium flow batteries[J]. Journal of Membrane Science, 2015, 488: 194-202. |
22 | Zhang H Z, Zhang H M, Li X F, et al. Nanofiltration (NF) membranes: the next generation separators for all vanadium redox flow batteries (VRBs)?[J]. Energy & Environmental Science, 2011, 4(5): 1676-1679. |
23 | Xu W J, Long J, Liu J, et al. A novel porous polyimide membrane with ultrahigh chemical stability for application in vanadium redox flow battery[J]. Chemical Engineering Journal, 2022, 428: 131203. |
24 | Zhou X J, Xue R, Zhong Y G, et al. Asymmetric porous membranes with ultra-high ion selectivity for vanadium redox flow batteries[J]. Journal of Membrane Science, 2020, 595: 117614. |
25 | Wang F R, Zhang Z H, Jiang F J. Dual-porous structured membrane for ion-selection in vanadium flow battery[J]. Journal of Power Sources, 2021, 506: 230234. |
26 | Chen D J, Li D D, Li X F. Hierarchical porous poly (ether sulfone) membranes with excellent capacity retention for vanadium flow battery application[J]. Journal of Power Sources, 2017, 353: 11-18. |
27 | Che X F, Zhao H, Ren X R, et al. Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery[J]. Journal of Membrane Science, 2020, 611: 118359. |
28 | Wang Z Q, Zhang S H, Liu Q, et al. Pyridinium functionalized poly(phthalazinone ether ketone) with pendant phenyl groups porous membranes for vanadium flow battery application by vapor induced phase separation[J]. Journal of Membrane Science, 2022, 656: 120646. |
29 | Chen D J, Liu G Y, Liu J, et al. Porous polybenzimidazole membranes with positive charges enable an excellent anti-fouling ability for vanadium-methylene blue flow battery[J]. Journal of Energy Chemistry, 2022, 68: 247-254. |
30 | Ding L M, Wang Y H, Wang L H, et al. Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery[J]. Journal of Membrane Science, 2022, 642: 119934. |
31 | Zhao Y Y, Xiang P Y, Wang Y, et al. A high ion-conductive and stable porous membrane for neutral aqueous Zn-based flow batteries[J]. Journal of Membrane Science, 2021, 640: 119804. |
32 | Chen D J, Duan W Q, He Y Y, et al. Porous membrane with high selectivity for alkaline quinone-based flow batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(43): 48533-48541. |
33 | Shi M Q, Dai Q, Li F, et al. Membranes with well-defined selective layer regulated by controlled solvent diffusion for high power density flow battery[J]. Advanced Energy Materials, 2020, 10(34): 2001382. |
34 | Qiao L, Zhang H M, Lu W J, et al. Advanced porous membranes with tunable morphology regulated by ionic strength of nonsolvent for flow battery[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24107-24113. |
35 | Qiao L, Zhang H M, Lu W J, et al. Advanced porous membranes with slit-like selective layer for flow battery[J]. Nano Energy, 2018, 54: 73-81. |
36 | Yuan Z Z, Duan Y Q, Zhang H Z, et al. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries[J]. Energy & Environmental Science, 2016, 9(2): 441-447. |
37 | Zhang H Z, Ding C, Cao J Y, et al. A novel solvent-template method to manufacture nano-scale porous membranes for vanadium flow battery applications[J]. Journal of Materials Chemistry A, 2014, 2(25): 9524-9531. |
38 | Li Y, Zhang H M, Li X F, et al. Porous poly (ether sulfone) membranes with tunable morphology: fabrication and their application for vanadium flow battery[J]. Journal of Power Sources, 2013, 233: 202-208. |
39 | Liu T, Yuan J S, Zhen Y H, et al. Porous poly(vinylidene fluoride) (PVDF) membrane with 2D vermiculite nanosheets modification for non-aqueous redox flow batteries[J]. Journal of Membrane Science, 2022, 651: 120468. |
40 | Hou X X, Huang K, Xia Y S, et al. Fish‐scale‐like nano‐porous membrane based on zeolite nanosheets for long stable zinc‐based flow battery[J]. AIChE Journal, 2022, 68(9): e17738. |
41 | Ling L, Xiao M, Han D M, et al. Porous composite membrane of PVDF/sulfonic silica with high ion selectivity for vanadium redox flow battery[J]. Journal of Membrane Science, 2019, 585: 230-237. |
42 | Wei X L, Nie Z M, Luo Q T, et al. Nanoporous polytetrafluoroethylene/silica composite separator as a high-performance all-vanadium redox flow battery membrane[J]. Advanced Energy Materials, 2013, 3(9): 1215-1220. |
43 | Zhang H Z, Zhang H M, Li X F, et al. Silica modified nanofiltration membranes with improved selectivity for redox flow battery application[J]. Energy & Environmental Science, 2012, 5(4): 6299-6303. |
44 | Chang N N, Yin Y B, Yue M, et al. A cost‐effective mixed matrix polyethylene porous membrane for long‐cycle high power density alkaline zinc-based flow batteries[J]. Advanced Functional Materials, 2019, 29(29): 1901674. |
45 | Peng S S, Zhang L Y, Zhang C K, et al. Gradient-distributed metal-organic framework-based porous membranes for nonaqueous redox flow batteries[J]. Advanced Energy Materials, 2018, 8(33): 1802533. |
46 | Yuan Z Z, Liu X Q, Xu W B, et al. Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life[J]. Nature Communications, 2018, 9: 3731. |
47 | Kim R, Kim H G, Doo G, et al. Ultrathin Nafion-filled porous membrane for zinc/bromine redox flow batteries[J]. Scientific Reports, 2017, 7: 10503. |
48 | Zhao Y Y, Lu W J, Yuan Z Z, et al. Advanced charged porous membranes with flexible internal crosslinking structures for vanadium flow batteries[J]. Journal of Materials Chemistry A, 2017, 5(13): 6193-6199. |
49 | Zhao Y Y, Li M R, Yuan Z Z, et al. Advanced charged sponge-like membrane with ultrahigh stability and selectivity for vanadium flow batteries[J]. Advanced Functional Materials, 2016, 26(2): 210-218. |
50 | Yuan Z Z, Dai Q, Zhao Y Y, et al. Polypyrrole modified porous poly(ether sulfone) membranes with high performance for vanadium flow batteries[J]. Journal of Materials Chemistry A, 2016, 4(33): 12955-12962. |
51 | Cao J, Yuan Z Z, Li X F, et al. Hydrophilic poly(vinylidene fluoride) porous membrane with well connected ion transport networks for vanadium flow battery[J]. Journal of Power Sources, 2015, 298: 228-235. |
52 | Li Y, Zhang H M, Zhang H Z, et al. Hydrophilic porous poly(sulfone) membranes modified by UV-initiated polymerization for vanadium flow battery application[J]. Journal of Membrane Science, 2014, 454: 478-487. |
53 | Zhang H Z, Zhang H M, Zhang F X, et al. Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application[J]. Energy & Environmental Science, 2013, 6(3): 776-781. |
54 | Mu D, Yu L H, Yu L W, et al. Toward cheaper vanadium flow batteries: porous polyethylene reinforced membrane with superior durability[J]. ACS Applied Energy Materials, 2018, 1(4): 1641-1648. |
55 | Zhao Y Y, Yuan Z Z, Lu W J, et al. The porous membrane with tunable performance for vanadium flow battery: the effect of charge[J]. Journal of Power Sources, 2017, 342: 327-334. |
56 | Lin R J, Hernandez B V, Ge L, et al. Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces[J]. Journal of Materials Chemistry A, 2018, 6(2): 293-312. |
57 | Hu J, Tang X M, Dai Q, et al. Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device[J]. Nature Communications, 2021, 12: 3409. |
58 | Chae I S, Luo T, Moon G H, et al. Ultra-high proton/vanadium selectivity for hydrophobic polymer membranes with intrinsic nanopores for redox flow battery[J]. Advanced Energy Materials, 2016, 6(16): 1600517. |
59 | Emelin N F, Jusoh N W C, Ting T M, et al. Surface modification of grafted porous polyvinylidine fluoride membrane with graphene oxide for vanadium redox flow battery[J]. Journal of Physics: Conference Series, 2022, 2259(1): 012016. |
60 | Chen Q, Du Y Y, Li K M, et al. Graphene enhances the proton selectivity of porous membrane in vanadium flow batteries[J]. Materials & Design, 2017, 113: 149-156. |
61 | Lu W J, Li T Y, Yuan C G, et al. Advanced porous composite membrane with ability to regulate zinc deposition enables dendrite-free and high-areal capacity zinc-based flow battery[J]. Energy Storage Materials, 2022, 47: 415-423. |
62 | Thong P T, Ajeya K V, Dhanabalan K, et al. A coupled-layer ion-conducting membrane using composite ionomer and porous substrate for application to vanadium redox flow battery[J]. Journal of Power Sources, 2022, 521: 230912. |
63 | Liu T, Zhang C J, Yuan J S, et al. Two-dimensional vermiculite nanosheets-modified porous membrane for non-aqueous redox flow batteries[J]. Journal of Power Sources, 2021, 500: 229987. |
64 | Hu J, Yuan C G, Zhi L P, et al. In situ defect-free vertically aligned layered double hydroxide composite membrane for high areal capacity and long-cycle zinc-based flow battery[J]. Advanced Functional Materials, 2021, 31(31): 2102167. |
65 | Hua L, Lu W J, Li T Y, et al. A highly selective porous composite membrane with bromine capturing ability for a bromine-based flow battery[J]. Materials Today Energy, 2021, 21: 100763. |
66 | Wu J E, Dai Q, Zhang H M, et al. A defect-free MOF composite membrane prepared via in-situ binder-controlled restrained second-growth method for energy storage device[J]. Energy Storage Materials, 2021, 35: 687-694. |
67 | Dai Q, Liu Z Q, Huang L, et al. Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery[J]. Nature Communications, 2020, 11: 13. |
68 | Hu J, Yue M, Zhang H M, et al. A boron nitride nanosheets composite membrane for a long-life zinc-based flow battery[J]. Angewandte Chemie International Edition, 2020, 59(17): 6715-6719. |
69 | Dai Q, Lu W J, Zhao Y Y, et al. Advanced scalable zeolite “ions-sieving” composite membranes with high selectivity[J]. Journal of Membrane Science, 2020, 595: 117569. |
70 | Lee W, Jung M, Serhiichuk D, et al. Layered composite membranes based on porous PVDF coated with a thin, dense PBI layer for vanadium redox flow batteries[J]. Journal of Membrane Science, 2019, 591: 117333. |
71 | Yuan Z Z, Zhu X X, Li M R, et al. A highly ion-selective zeolite flake layer on porous membranes for flow battery applications[J]. Angewandte Chemie International Edition, 2016, 55(9): 3058-3062. |
72 | Li Y, Li X F, Cao J Y, et al. Composite porous membranes with an ultrathin selective layer for vanadium flow batteries[J]. Chemical Communications, 2014, 50(35): 4596-4599. |
73 | Shi M L, Liu L, Tong Y J, et al. Advanced porous polyphenylsulfone membrane with ultrahigh chemical stability and selectivity for vanadium flow batteries[J]. Journal of Applied Polymer Science, 2019, 136(28): 47752. |
74 | Lu W J, Yuan Z Z, Zhao Y Y, et al. High-performance porous uncharged membranes for vanadium flow battery applications created by tuning cohesive and swelling forces[J]. Energy & Environmental Science, 2016, 9(7): 2319-2325. |
75 | Lu W J, Yuan Z Z, Li M R, et al. Solvent-induced rearrangement of ion-transport channels: a way to create advanced porous membranes for vanadium flow batteries[J]. Advanced Functional Materials, 2017, 27(4): 1604587. |
76 | Lu W J, Yuan Z Z, Zhao Y Y, et al. Advanced porous PBI membranes with tunable performance induced by the polymer-solvent interaction for flow battery application[J]. Energy Storage Materials, 2018, 10: 40-47. |
77 | Lu W J, Qiao L, Dai Q, et al. Solvent treatment: the formation mechanism of advanced porous membranes for flow batteries[J]. Journal of Materials Chemistry A, 2018, 6(32): 15569-15576. |
78 | Lu W J, Zhang H M, Li X. Membranes fabricated by solvent treatment for flow battery: effects of initial structures and intrinsic properties[J]. Journal of Membrane Science, 2019, 577: 212-218. |
[1] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[2] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[5] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[6] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[9] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[10] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[11] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[12] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[13] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[14] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[15] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||