CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1539-1548.DOI: 10.11949/0438-1157.20201708
• Process system engineering • Previous Articles Next Articles
ZHU Xiongzhuo(),ZHANG Hanwen,YANG Chunjie()
Received:
2020-11-20
Revised:
2020-12-07
Online:
2021-03-05
Published:
2021-03-05
Contact:
YANG Chunjie
通讯作者:
杨春节
作者简介:
朱雄卓(1999—),男,博士研究生,基金资助:
CLC Number:
ZHU Xiongzhuo, ZHANG Hanwen, YANG Chunjie. MWPCA blast furnace anomaly monitoring algorithm based on Gaussian mixture model[J]. CIESC Journal, 2021, 72(3): 1539-1548.
朱雄卓, 张瀚文, 杨春节. 基于高斯混合模型的MWPCA高炉异常监测算法[J]. 化工学报, 2021, 72(3): 1539-1548.
Add to citation manager EndNote|Ris|BibTeX
序号 | 变量 | 单位 | 序号 | 变量 | 单位 | 序号 | 变量 | 单位 |
---|---|---|---|---|---|---|---|---|
1 | 富氧率 | % | 13 | 冷风流量 | 104 m3/h | 25 | 实际风速 | m/s |
2 | 高炉渗透系数 | 14 | 炉腹煤气量 | m3 | 26 | 冷风温度 | ℃ | |
3 | CO体积 | % | 15 | 理论燃烧温度 | ℃ | 27 | 顶温东北 | ℃ |
4 | H2体积 | % | 16 | 炉顶压力(1) | kPa | 28 | 顶温西南 | ℃ |
5 | CO2体积 | % | 17 | 炉顶压力(2) | kPa | 29 | 顶温西北 | ℃ |
6 | 标准风速 | m/s | 18 | 炉顶压力(3) | kPa | 30 | 顶温东南 | ℃ |
7 | 富氧流量 | m3/h | 19 | 炉顶压力(4) | kPa | 31 | 顶温下降管 | ℃ |
8 | 炉腹煤气指数 | 20 | 富氧压力 | MPa | 32 | 热风温度 | ℃ | |
9 | 鼓风动能 | kJ | 21 | 冷风压力(1) | MPa | 33 | 设定喷煤量 | t/h |
10 | 阻力系数 | 22 | 冷风压力(2) | MPa | 34 | 本小时喷煤量 | t | |
11 | 鼓风湿度 | 23 | 热风压力(1) | MPa | 35 | 上小时喷煤量 | t | |
12 | 全压差 | MPa | 24 | 热风压力(2) | MPa |
Table 1 A list of variables for the dataset
序号 | 变量 | 单位 | 序号 | 变量 | 单位 | 序号 | 变量 | 单位 |
---|---|---|---|---|---|---|---|---|
1 | 富氧率 | % | 13 | 冷风流量 | 104 m3/h | 25 | 实际风速 | m/s |
2 | 高炉渗透系数 | 14 | 炉腹煤气量 | m3 | 26 | 冷风温度 | ℃ | |
3 | CO体积 | % | 15 | 理论燃烧温度 | ℃ | 27 | 顶温东北 | ℃ |
4 | H2体积 | % | 16 | 炉顶压力(1) | kPa | 28 | 顶温西南 | ℃ |
5 | CO2体积 | % | 17 | 炉顶压力(2) | kPa | 29 | 顶温西北 | ℃ |
6 | 标准风速 | m/s | 18 | 炉顶压力(3) | kPa | 30 | 顶温东南 | ℃ |
7 | 富氧流量 | m3/h | 19 | 炉顶压力(4) | kPa | 31 | 顶温下降管 | ℃ |
8 | 炉腹煤气指数 | 20 | 富氧压力 | MPa | 32 | 热风温度 | ℃ | |
9 | 鼓风动能 | kJ | 21 | 冷风压力(1) | MPa | 33 | 设定喷煤量 | t/h |
10 | 阻力系数 | 22 | 冷风压力(2) | MPa | 34 | 本小时喷煤量 | t | |
11 | 鼓风湿度 | 23 | 热风压力(1) | MPa | 35 | 上小时喷煤量 | t | |
12 | 全压差 | MPa | 24 | 热风压力(2) | MPa |
变量 | p | 正态分布假设 |
---|---|---|
热风压力 | <0.001 | 拒绝 |
全压差 | <0.001 | 拒绝 |
理论燃烧温度 | <0.001 | 拒绝 |
鼓风动能 | <0.001 | 拒绝 |
Table 2 A list of variables for the dataset
变量 | p | 正态分布假设 |
---|---|---|
热风压力 | <0.001 | 拒绝 |
全压差 | <0.001 | 拒绝 |
理论燃烧温度 | <0.001 | 拒绝 |
鼓风动能 | <0.001 | 拒绝 |
变量 | 7月1日均值 | 7月20日均值 | 7月1日 标准差 | 7月20日 标准差 |
---|---|---|---|---|
热风压力/MPa | 0.393 | 0.389 | 0.006 | 0.017 |
全压差/MPa | 165.974 | 161.558 | 6.433 | 7.636 |
理论燃烧温度/℃ | 2262.765 | 2277.597 | 8.345 | 23.872 |
鼓风动能/kJ | 135.888 | 138.128 | 9.264 | 11.450 |
Table 3 Data mean and standard deviation of the two groups
变量 | 7月1日均值 | 7月20日均值 | 7月1日 标准差 | 7月20日 标准差 |
---|---|---|---|---|
热风压力/MPa | 0.393 | 0.389 | 0.006 | 0.017 |
全压差/MPa | 165.974 | 161.558 | 6.433 | 7.636 |
理论燃烧温度/℃ | 2262.765 | 2277.597 | 8.345 | 23.872 |
鼓风动能/kJ | 135.888 | 138.128 | 9.264 | 11.450 |
统计量 | 误报率 | 故障报警持续 时间 | 故障的报警 起始时刻 |
---|---|---|---|
5.74% | 186个时刻 | 1859时刻 | |
MAX-T2统计量 | 1.14% | 173个时刻 | 1861时刻 |
主元凸包算法 | 1.14%~5.74% | 173~186个时刻 | 1859~1861时刻 |
两阶段PCA算法 | 3.40% | 117个时刻 | 1896时刻 |
KPCA算法 | 4.33% | 184个时刻 | 1860时刻 |
GMM-T2统计量 | 0.24% | 189个时刻 | 1861时刻 |
Table 4 Comparison of different algorithms
统计量 | 误报率 | 故障报警持续 时间 | 故障的报警 起始时刻 |
---|---|---|---|
5.74% | 186个时刻 | 1859时刻 | |
MAX-T2统计量 | 1.14% | 173个时刻 | 1861时刻 |
主元凸包算法 | 1.14%~5.74% | 173~186个时刻 | 1859~1861时刻 |
两阶段PCA算法 | 3.40% | 117个时刻 | 1896时刻 |
KPCA算法 | 4.33% | 184个时刻 | 1860时刻 |
GMM-T2统计量 | 0.24% | 189个时刻 | 1861时刻 |
1 | 杨天钧. 中国高炉炼铁技术的进展[J]. 中国冶金, 2004, (6): 1-7. |
Yang T J. Technology process of blast furnace iron making in China[J]. China Metallurgy, 2004, (6): 1-7. | |
2 | 由文泉. 实用高炉炼铁技术[M]. 北京: 冶金工业出版社, 2002. |
You W Q. Applied Blast Furnace Ironmaking Technology[M]. Beijing: Metallurgical Industry Press, 2002. | |
3 | 王维兴. 中国高炉炼铁技术进展[J]. 钢铁, 2005, (10): 11-15. |
Wang W X. Technical progress of BF ironmaking in China[J]. Iron & Steel, 2005, (10): 11-15. | |
4 | 王维兴, 黄洁. 中国高炉炼铁技术发展评述[J]. 钢铁, 2007, 42(3): 1-4. |
Wang W X, Huang J. Review of technological development of BF ironmaking in China[J]. Iron & Steel, 2007, 42(3): 1-4. | |
5 | Zhang T, Wang W, Ye H, et al. Fault detection for ironmaking process based on stacked denoising autoencoders[C]// 2016 American Control Conference (ACC). American Automatic Control Council (AACC), 2016. |
6 | 周渝生, 钱晖, 张友平, 等. 现有主要炼铁工艺的优缺点和研发方向[J]. 钢铁, 2009, 44(2): 1-10. |
Zhou Y S, Qian H, Zhang Y P, et al. Advantages and disadvantages and its research direction of present ironmaking processes[J]. Iron & Steel, 2009, 44(2): 1-10. | |
7 | 安汝峤, 杨春节, 潘怡君. 基于加权图方法的高炉过程故障检测[J]. 高校化学工程学报, 2020, 34(2): 495-502. |
An R Q, Yang C J, Pan Y J. Fault detection based on the weight graph method in a blast furnace process[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(2): 495-502. | |
8 | An R, Yang C, Pan Y. Unsupervised change point detection using a weight graph method for process monitoring[J]. Industrial & Engineering Chemistry Research, 2019, 58(4): 1624-1634. |
9 | Wang L, Yang C J, Sun Y X, et al. Effective variable selection and moving window HMM-based approach for iron-making process monitoring[J]. Journal of Process Control, 2018, 68: 86-95. |
10 | Pan Y, Yang C, An R, et al. Robust principal component pursuit for fault detection in a blast furnace process[J]. Industrial & Engineering Chemistry Research, 2018, 57(1): 283-291. |
11 | Wang L, Yang C, Sun Y. Multimode process monitoring approach based on moving window hidden Markov model[J]. Industrial & Engineering Chemistry Research, 2018, 57(1): 292-301. |
12 | Pan Y, Yang C, An R, et al. Fault detection with improved principal component pursuit method[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 157: 111-119. |
13 | Li R F, Wang X Z. Dimension reduction of process dynamic trends using independent component analysis[J]. Computers & Chemical Engineering, 2002, 26(3): 467-473. |
14 | Kano M, Tanaka S, Hasebe S, et al. Monitoring independent components for fault detection[J]. AIChE Journal, 2003, 49(4): 969-976. |
15 | Kano M, Tanaka S, Hasebe S, et al. Combined multivariate statistical process control[J]. IFAC Proceedings Volumes, 2004, 37(1): 281-286. |
16 | Ge Z, Song Z. Process monitoring based on independent component analysis- principal component analysis (ICA- PCA) and similarity factors[J]. Industrial & Engineering Chemistry Research, 2007, 46(7): 2054-2063. |
17 | Thissen U, Swierenga H, de Weijer A P, et al. Multivariate statistical process control using mixture modelling[J]. Journal of Chemometrics, 2005, 19(1): 23-31. |
18 | Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J]. AIChE Journal, 2008, 54(7): 1811-1829. |
19 | Chen T, Zhang R. On-line multivariate statistical monitoring of batch processes using Gaussian mixture model[J]. Computers & Chemical Engineering, 2010, 34(4): 500-507. |
20 | Yamamoto T, Sawada T, Shinohara K, et al. Blast furnace operational system with the application of advanced go/stop system at mizushima works[C]//IISC. The Sixth International Iron and Steel Congress. 1990: 364-371. |
21 | 李芳. 高炉异常炉况预报专家系统研究[D]. 重庆: 重庆大学, 2007. |
Li F. The research of expert system for blast furnace exceptional situation forecast[D]. Chongqing: Chongqing University, 2007. | |
22 | Tian H, Wang A. A novel fault diagnosis system for blast furnace based on support vector machine ensemble[J]. ISIJ International, 2010, 50(5): 738-742. |
23 | Liu L M, Wang A N, Sha M, et al. Multi-class classification methods of cost-conscious LS-SVM for fault diagnosis of blast furnace[J]. Journal of Iron and Steel Research, International, 2011, (10): 17-33. |
24 | 赵明. 基于神经网络的高炉炉况诊断与预报研究[D]. 沈阳: 东北大学, 2010. |
Zhao M. Study on diagnose and forest of blast furnace condition based on neural network[D]. Shenyang: Northeastern University, 2010. | |
25 | Vanhatalo E. Multivariate process monitoring of an experimental blast furnace[J]. Quality & Reliability Engineering International, 2010, 26(5): 495-508. |
26 | Zhang T, Ye H, Wang W, et al. Fault diagnosis for blast furnace ironmaking process based on two-stage principal component analysis[J]. ISIJ International, 2014, 54(10): 2334-2341. |
27 | Zhang T, Ye H, Wang W. Application of PCA based process monitoring method to ironmaking process[C]//2015 Chinese Automation Congress (CAC). Wuhan, 2015: 893-898. |
28 | Zhou B, Ye H, Zhang H, et al. Process monitoring of iron-making process in a blast furnace with PCA-based methods[J]. Control Engineering Practice, 2016, 47: 1-14. |
29 | 孙梦园. 基于改进ICA算法的高炉故障诊断方法[D]. 杭州: 浙江大学, 2017. |
Sun M Y. Blast furnace fault diagnosis method based on improved ICA[D]. Hangzhou: Zhejiang University, 2017. | |
30 | Shang J, Chen M, Ji H, et al. Dominant trend based logistic regression for fault diagnosis in nonstationary processes[J]. Control Engineering Practice, 2017, 66: 156-168. |
31 | Shang J, Chen M, Zhang H, et al. Increment-based recursive transformed component statistical analysis for monitoring blast furnace iron-making processes: an index-switching scheme[J]. Control Engineering Practice, 2018, 77: 190-200. |
32 | Pearson K. LIII. On lines and planes of closest fit to systems of points in space[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901, 2(11): 559-572. |
33 | Hotelling H. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology, 1933, 24(6): 417-441. |
34 | Jackson J E. Quality control methods for several related variables[J]. Technometrics, 1959, 1(4): 359-377. |
35 | Zheng J, Wen Q, Song Z. Recursive Gaussian mixture models for adaptive process monitoring[J]. Industrial & Engineering Chemistry Research, 2019, 58(16): 6551-6561. |
36 | Xie X, Shi H. Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models[J]. Industrial & Engineering Chemistry Research, 2012, 51(15): 5497-5505. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[3] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[4] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[5] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[6] | Guang WANG, Fashun SHAN, Yucheng QIAN, Jianfang JIAO. Incipient fault detection method for chemical process based on ensemble learning transfer entropy [J]. CIESC Journal, 2023, 74(7): 2967-2978. |
[7] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[8] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[9] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[10] | Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA [J]. CIESC Journal, 2023, 74(4): 1630-1638. |
[11] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[12] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[13] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
[14] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[15] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||