CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 25-31.DOI: 10.11949/0438-1157.20230069
• Reviews and monographs • Previous Articles Next Articles
Yanpeng WU1(), Qianlong LIU1, Dongmin TIAN1, Fengjun CHEN2
Received:
2023-02-01
Revised:
2023-03-05
Online:
2023-09-27
Published:
2023-06-05
Contact:
Yanpeng WU
通讯作者:
吴延鹏
作者简介:
吴延鹏(1972—),男,博士,副教授,wuyanpeng@ustb.edu.cn
基金资助:
CLC Number:
Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management[J]. CIESC Journal, 2023, 74(S1): 25-31.
吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31.
文献 | 研究类型 | PCM种类 | 系统类型 | 结论或实验结果 |
---|---|---|---|---|
[ | 实验 | 二十三烷 | 与筛网芯热管耦合 | PCM提供了更高的稳定温度,并为加热和冷却循环提供了更多时间 |
[ | 实验 | 石蜡 | 与振荡热管耦合 | 基于PCM/振荡热管的电池冷却模块提供了更高的冷却效率;振荡 热管的启动温度必须低于PCM中相变的温度 |
[ | 实验 | 石蜡 | 与不同传热装置耦合 | 与使用翅片的系统相比,热管的使用将PCM的凝固率提高了两倍 |
[ | 实验 | 硝酸钠 | 与不同传热装置耦合 | 热管由于非常小的热阻和在整个热管长度上保持均匀温度的能力而提供了最高的熔化率 |
[ | 实验 | 石蜡 | 与三维脉动热管耦合 | 石蜡/四层三维脉动热管耦合系统的完全凝固时间约为纯石蜡完全凝固时间的29% |
[ | 实验 | 不同填充率的石蜡 | 与普通热管耦合 | 蒸发与冷凝温差随石蜡充填速率的增加而减小 |
[ | 实验 | 二十三烷、月桂酸和 棕榈酸 | 与普通热管耦合 | 基于热管/二十三烷的冷却系统在更大程度上降低了风扇功耗 (几乎46%) |
[ | 实验 | 癸酸、月桂酸和硬脂酸 | 与铜水热管耦合 | 在被动散热下蒸发段降温幅度可达22%;在有风机散热的情况下,降温幅度可达7.9% |
[ | 实验 | 癸酸基纳米嵌入式PCM | 与T型铜热管耦合 | 加热器表面的温度降低了3℃ |
[ | 实验 | 石蜡 | 与三维振荡热管耦合 | 系统具有较低的壁温和石蜡温度 |
[ | 实验 | 八水氢氧化钡 | 与脉动热管耦合 | 相变材料加热温度为120℃,加热流量为0.58 m3/h,充液率为0.3时,装置蓄热效果最佳 |
[ | 实验 | 石蜡 | 与三维脉动热管耦合 | 耦合模块的热阻随送风温度的升高而增大,随送风速度的增大而 减小 |
[ | 实验 | 二十烷 | 与平板热管耦合 | 提高电池组均温性,降低电池组最高温度 |
[ | 实验 | 石蜡 | 与重力驱动型热管耦合 | 传热率随入口温度和热流体流量的增加而增加 |
[ | 实验 | 石蜡微胶囊垫片 | 与铜水热管耦合 | 在较厚的相变材料中加入热管时,热管以直接接触的方式接触电池表面,降低温差效果较好 |
[ | 实验 | 膨胀石墨/石蜡 | 与振荡热管耦合 | 相对于EG/石蜡复合材料,石蜡从相同的起始温度释放热量到环境温度需要大约两倍的时间 |
[ | 实验 | 石蜡 | 与三维振荡热管耦合 | 电子器件表面温度可以很好地控制在100℃以下,比常规风冷低约35℃,热阻降低高达36.3% |
[ | 实验 | 月桂酸 | 与平板热管耦合 | 平均热阻从0.084 K/W减小至0.071 K/W;随着倾角的增加,平板 热管的有效热导率先减小后增大 |
[ | 实验 | 月桂酸 | 与平板热管耦合 | 平板热管大大提高了空气与PCM之间的传热速率 |
[ | 数值模拟 | 月桂酸 | 与平板热管耦合 | 增加翅片高度可以有效增加储热器的储热容量,平板热管的存在 减少了相变过程中的热损失 |
[ | 数值模拟 | RT42 | 与垂直和水平热管耦合 | 通过提供额外的蓄热来提高11.7%的散热效果 |
Table 1 Research progress on the coupling of heat pipe and PCM
文献 | 研究类型 | PCM种类 | 系统类型 | 结论或实验结果 |
---|---|---|---|---|
[ | 实验 | 二十三烷 | 与筛网芯热管耦合 | PCM提供了更高的稳定温度,并为加热和冷却循环提供了更多时间 |
[ | 实验 | 石蜡 | 与振荡热管耦合 | 基于PCM/振荡热管的电池冷却模块提供了更高的冷却效率;振荡 热管的启动温度必须低于PCM中相变的温度 |
[ | 实验 | 石蜡 | 与不同传热装置耦合 | 与使用翅片的系统相比,热管的使用将PCM的凝固率提高了两倍 |
[ | 实验 | 硝酸钠 | 与不同传热装置耦合 | 热管由于非常小的热阻和在整个热管长度上保持均匀温度的能力而提供了最高的熔化率 |
[ | 实验 | 石蜡 | 与三维脉动热管耦合 | 石蜡/四层三维脉动热管耦合系统的完全凝固时间约为纯石蜡完全凝固时间的29% |
[ | 实验 | 不同填充率的石蜡 | 与普通热管耦合 | 蒸发与冷凝温差随石蜡充填速率的增加而减小 |
[ | 实验 | 二十三烷、月桂酸和 棕榈酸 | 与普通热管耦合 | 基于热管/二十三烷的冷却系统在更大程度上降低了风扇功耗 (几乎46%) |
[ | 实验 | 癸酸、月桂酸和硬脂酸 | 与铜水热管耦合 | 在被动散热下蒸发段降温幅度可达22%;在有风机散热的情况下,降温幅度可达7.9% |
[ | 实验 | 癸酸基纳米嵌入式PCM | 与T型铜热管耦合 | 加热器表面的温度降低了3℃ |
[ | 实验 | 石蜡 | 与三维振荡热管耦合 | 系统具有较低的壁温和石蜡温度 |
[ | 实验 | 八水氢氧化钡 | 与脉动热管耦合 | 相变材料加热温度为120℃,加热流量为0.58 m3/h,充液率为0.3时,装置蓄热效果最佳 |
[ | 实验 | 石蜡 | 与三维脉动热管耦合 | 耦合模块的热阻随送风温度的升高而增大,随送风速度的增大而 减小 |
[ | 实验 | 二十烷 | 与平板热管耦合 | 提高电池组均温性,降低电池组最高温度 |
[ | 实验 | 石蜡 | 与重力驱动型热管耦合 | 传热率随入口温度和热流体流量的增加而增加 |
[ | 实验 | 石蜡微胶囊垫片 | 与铜水热管耦合 | 在较厚的相变材料中加入热管时,热管以直接接触的方式接触电池表面,降低温差效果较好 |
[ | 实验 | 膨胀石墨/石蜡 | 与振荡热管耦合 | 相对于EG/石蜡复合材料,石蜡从相同的起始温度释放热量到环境温度需要大约两倍的时间 |
[ | 实验 | 石蜡 | 与三维振荡热管耦合 | 电子器件表面温度可以很好地控制在100℃以下,比常规风冷低约35℃,热阻降低高达36.3% |
[ | 实验 | 月桂酸 | 与平板热管耦合 | 平均热阻从0.084 K/W减小至0.071 K/W;随着倾角的增加,平板 热管的有效热导率先减小后增大 |
[ | 实验 | 月桂酸 | 与平板热管耦合 | 平板热管大大提高了空气与PCM之间的传热速率 |
[ | 数值模拟 | 月桂酸 | 与平板热管耦合 | 增加翅片高度可以有效增加储热器的储热容量,平板热管的存在 减少了相变过程中的热损失 |
[ | 数值模拟 | RT42 | 与垂直和水平热管耦合 | 通过提供额外的蓄热来提高11.7%的散热效果 |
纳米粒子 | 相变材料 | 添加比例 | 效果 | 文献 |
---|---|---|---|---|
Fe3O4 | 石蜡 | 10%,20% | 0.25~0.37/0.40 | [ |
石墨 | 石蜡 | 10% | 0.1264~0.9362 | [ |
纳米石墨板 | 豆蔻酸 | 0.5%,1%,2% | 热导率提高了8%,18%,38% | [ |
碳纳米管 | 硬脂酸 | 5% | 放热率提高91% | [ |
铜 | 石蜡 | 1% | 融化时间缩短13.1% | [ |
铜,锌 | 石蜡 | 1.5% | 热导率提高了20.6%,61.5% | [ |
Si3N4 | 石蜡 | 10% | 热导率提高了35% | [ |
石墨烯 | 月桂酸 | 1% | 热导率提高了23% | [ |
碳纳米角钢 | 月桂酸 | 2% | 热导率提高了37%(固态),11%(液态) | [ |
氧化铜 | 油脂酸 | 0.5%,1%,1.5%,2% | 凝固时间分别减少了7.14%,14.28%,25%,28.57% | [ |
碳纳米管 | 棕榈酸/硬脂酸 | 5%,6%,7%,8% | 热导率分别提高了20.2%,26.2%,29.7% | [ |
Table 2 Some research on the composite PCM of nanoparticles-organic compounds
纳米粒子 | 相变材料 | 添加比例 | 效果 | 文献 |
---|---|---|---|---|
Fe3O4 | 石蜡 | 10%,20% | 0.25~0.37/0.40 | [ |
石墨 | 石蜡 | 10% | 0.1264~0.9362 | [ |
纳米石墨板 | 豆蔻酸 | 0.5%,1%,2% | 热导率提高了8%,18%,38% | [ |
碳纳米管 | 硬脂酸 | 5% | 放热率提高91% | [ |
铜 | 石蜡 | 1% | 融化时间缩短13.1% | [ |
铜,锌 | 石蜡 | 1.5% | 热导率提高了20.6%,61.5% | [ |
Si3N4 | 石蜡 | 10% | 热导率提高了35% | [ |
石墨烯 | 月桂酸 | 1% | 热导率提高了23% | [ |
碳纳米角钢 | 月桂酸 | 2% | 热导率提高了37%(固态),11%(液态) | [ |
氧化铜 | 油脂酸 | 0.5%,1%,1.5%,2% | 凝固时间分别减少了7.14%,14.28%,25%,28.57% | [ |
碳纳米管 | 棕榈酸/硬脂酸 | 5%,6%,7%,8% | 热导率分别提高了20.2%,26.2%,29.7% | [ |
文献 | PCM | 纳米粒子 | 热管类型 | 实验结果 |
---|---|---|---|---|
[ | 二十三烷 | 纳米Al2O3 | 铜水热管 | 1%(体积分数) Al2O3传热效果最佳,蒸发段温度最高可降低25.75%,可节约风机 能耗53% |
[ | 石蜡 | 泡沫铜 | 热管型散热器 | 孔隙率为75%的泡沫铜混合相变材料的最大热导率为26.78 W/(m·K) |
[ | 石蜡 | 泡沫铜 | 重力辅助型热管 | 在2、2.5和3 kW/m2的热通量下,使用风扇的混合冷却的最大温度降低分别为47%、51%和54% |
[ | 石蜡 | 泡沫铜 | 平板热管 | 泡沫铜将传热系数提高了33倍,但将等效潜热降低了30%。冷却效率随泡沫铜孔隙率的增加先增大后降低。最大冷却效率的最佳孔隙率估计在40%~50%之间 |
[ | 石蜡 | 碳纳米管 | 铜水热管 | 热管冷却模块的热性能随着碳纳米管颗粒浓度的增加而增加,当浓度超过2%(质量分数)时,性能下降 |
[ | 石蜡 | 纳米石墨烯 | 铝合金制热管蓄热器 | 添加2%(质量分数)纳米石墨烯可使石蜡的热导率提高21.6%,相变潜热降低10.5% |
[ | KNO3 | 泡沫铜 | 翅片-热管 | 热管-翅片-泡沫铜增强传热效果最好,PCM的完整循环时间缩短了93.34% |
Table 3 Method of strengthening heat transfer of PCM coupled with heat pipe
文献 | PCM | 纳米粒子 | 热管类型 | 实验结果 |
---|---|---|---|---|
[ | 二十三烷 | 纳米Al2O3 | 铜水热管 | 1%(体积分数) Al2O3传热效果最佳,蒸发段温度最高可降低25.75%,可节约风机 能耗53% |
[ | 石蜡 | 泡沫铜 | 热管型散热器 | 孔隙率为75%的泡沫铜混合相变材料的最大热导率为26.78 W/(m·K) |
[ | 石蜡 | 泡沫铜 | 重力辅助型热管 | 在2、2.5和3 kW/m2的热通量下,使用风扇的混合冷却的最大温度降低分别为47%、51%和54% |
[ | 石蜡 | 泡沫铜 | 平板热管 | 泡沫铜将传热系数提高了33倍,但将等效潜热降低了30%。冷却效率随泡沫铜孔隙率的增加先增大后降低。最大冷却效率的最佳孔隙率估计在40%~50%之间 |
[ | 石蜡 | 碳纳米管 | 铜水热管 | 热管冷却模块的热性能随着碳纳米管颗粒浓度的增加而增加,当浓度超过2%(质量分数)时,性能下降 |
[ | 石蜡 | 纳米石墨烯 | 铝合金制热管蓄热器 | 添加2%(质量分数)纳米石墨烯可使石蜡的热导率提高21.6%,相变潜热降低10.5% |
[ | KNO3 | 泡沫铜 | 翅片-热管 | 热管-翅片-泡沫铜增强传热效果最好,PCM的完整循环时间缩短了93.34% |
1 | 王烨, 胡成志, 王涛, 等. 平板热管-PCM复合动力电池散热系统性能研究[J]. 工程热物理学报, 2022, 43(3): 749-757. |
Wang Y, Hu C Z, Wang T, et al. Study on a composite power battery thermal management system based on flat heat pipe-PCM[J]. Journal of Engineering Thermophysics, 2022, 43(3): 749-757. | |
2 | Kumaresan G, Vijayakumar P, Ravikumar M, et al. Experimental study on effect of wick structures on thermal performance enhancement of cylindrical heat pipes[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(1): 389-400. |
3 | Amini A, Miller J, Jouhara H. An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers[J]. Energy, 2016, 136: 163-172. |
4 | 何智航. 热管PCM热控装置设计及性能研究[J]. 热科学与技术, 2018, 17(1): 80-86. |
He Z H. Design and performance study on heat pipe/PCM composite thermal control device[J]. Journal of Thermal Science and Technology, 2018, 17(1): 80-86. | |
5 | Ling Z Y, Zhang Z G, Shi G Q, et al. Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 427-438. |
6 | 冯明旭, 毕海权, 秦萍, 等. 基于相变材料与空气耦合热管理系统的电池温度控制研究[J]. 制冷与空调(四川), 2018, 32(2): 201-206. |
Feng M X, Bi H Q, Qin P, et al. Research on temperature control of battery module based on phase change material and air coupled thermal management system[J]. Refrigeration & Air Conditioning, 2018, 32(2): 201-206. | |
7 | Palappan R, Pasupathy A, Asirvatham L, et al. Heating and cooling capacity of phase change material coupled with screen mesh wick heat pipe for thermal energy storage applications[J]. Thermal Science, 2020, 24(2 Part A): 723-734. |
8 | Wang Q C, Rao Z H, Huo Y T, et al. Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system[J]. International Journal of Thermal Sciences, 2016, 102: 9-16. |
9 | Robak C W, Bergman T L, Faghri A. Enhancement of latent heat energy storage using embedded heat pipes[J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16): 3476-3484. |
10 | Sharifi N, Wang S M, Bergman T L, et al. Heat pipe-assisted melting of a phase change material[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3458-3469. |
11 | 曲捷. 三维脉动热管传热与流动特性研究[D]. 徐州: 中国矿业大学, 2021. |
Qu J. Study on the heat transfer and flow characteristics of the three-dimensional oscillating heat pipe[D]. Xuzhou: China University of Mining and Technology, 2021. | |
12 | Zhuang B S, Deng W J, Tang Y, et al. Experimental investigation on a novel composite heat pipe with phase change materials coated on the adiabatic section[J]. International Communications in Heat and Mass Transfer, 2019, 100: 42-50. |
13 | Weng Y C, Cho H P, Chang C C, et al. Heat pipe with PCM for electronic cooling[J]. Applied Energy, 2011, 88(5): 1825-1833. |
14 | 陈忱, 孙俊俊, 朱庆勇. 相变材料耦合热管传热性能分析[J]. 节能, 2021, 40(11): 36-40. |
Chen C, Sun J J, Zhu Q Y. Analysis of heat transfer performance of phase change materials coupled with heat pipe[J]. Energy Conservation, 2021, 40(11): 36-40. | |
15 | Qu J, Ke Z Q, Zuo A H, et al. Experimental investigation on thermal performance of phase change material coupled with three-dimensional oscillating heat pipe (PCM/3D-OHP) for thermal management application[J]. International Journal of Heat and Mass Transfer, 2019, 129: 773-782. |
16 | 卢小辉, 罗孝学, 曹士博, 等. 甲醇脉动热管相变蓄热器蓄热实验分析[J]. 低温与超导, 2022, 50(1): 88-94. |
Lu X H, Luo X X, Cao S B, et al. Experimental analysis of heat storage of methanol pulsating heat pipe phase change heat accumulator[J]. Cryogenics & Superconductivity, 2022, 50(1): 88-94. | |
17 | 张志远, 凌云志, 崔奇, 等. 三维脉动热管耦合相变材料的传热与节能特性研究[J]. 制冷学报, 2022, 43(1): 131-137. |
Zhang Z Y, Ling Y Z, Cui Q, et al. Heat transfer and energy saving characteristics of 3D pulsating heat pipe coupled with phase change materials[J]. Journal of Refrigeration, 2022, 43(1): 131-137. | |
18 | 罗孝学, 章学来, 华维三, 等. 一种脉动热管相变蓄放热试验装置的设计[J]. 流体机械, 2017, 45(4): 63-67. |
Luo X X, Zhang X L, Hua W S, et al. Design of pulsating heat pipe type phase change thermal storage experimental device[J]. Fluid Machinery, 2017, 45(4): 63-67. | |
19 | 王烨. 基于平板热管-相变材料复合传热系统的动力电池热管理研究[D]. 大连: 大连理工大学, 2021. |
Wang Y. Study on a composite power battery thermal management system based on flat heat pipe-phase change material[D]. Dalian: Dalian University of Technology, 2021. | |
20 | Liu Z L, Wang Z Y, Ma C F. An experimental study on heat transfer characteristics of heat pipe heat exchanger with latent heat storage(Part Ⅰ): Charging only and discharging only modes[J]. Energy Conversion and Management, 2006, 47(7/8): 944-966. |
21 | 赵泓伍. 基于相变材料与热管的大容量锂离子电池热管理技术研究[D]. 北京: 华北电力大学(北京), 2022. |
Zhao H W. Research on battery thermal management of large-capacity lithium-ion battery based on phase change material and heat pipe[D]. Beijing: North China Electric Power University, 2022. | |
22 | Zhao J T, Rao Z H, Liu C Z, et al. Experiment study of oscillating heat pipe and phase change materials coupled for thermal energy storage and thermal management[J]. International Journal of Heat and Mass Transfer, 2016, 99: 252-260. |
23 | Ling Y Z, Zhang X S, Wang F, et al. Performance study of phase change materials coupled with three-dimensional oscillating heat pipes with different structures for electronic cooling[J]. Renewable Energy, 2020, 154: 636-649. |
24 | Wang Z Y, Diao Y H, Zhao Y H, et al. Effect of inclination angle on the charging process of flat heat pipe-assisted latent heat storage unit[J]. Journal of Energy Storage, 2022, 51: 104402. |
25 | Liu J, Diao Y H, Zhao Y H, et al. Heat transfer properties of a latent thermal storage unit with flat microheat pipe arrays[J]. Journal of Energy Engineering, 2017, 143(5): 04017048. |
26 | Diao Y H, Liang L, Zhao Y H, et al. Numerical investigation of the thermal performance enhancement of latent heat thermal energy storage using longitudinal rectangular fins and flat micro-heat pipe arrays[J]. Applied Energy, 2019, 233/234: 894-905. |
27 | Behi H, Ghanbarpour M, Behi M. Investigation of PCM-assisted heat pipe for electronic cooling[J]. Applied Thermal Engineering, 2017, 127: 1132-1142. |
28 | Yin H B, Gao X N, Ding J E, et al. Experimental research on heat transfer mechanism of heat sink with composite phase change materials[J]. Energy Conversion and Management, 2008, 49(6): 1740-1746. |
29 | Zhang W C, Qiu J Y, Yin X X, et al. A novel heat pipe assisted separation type battery thermal management system based on phase change material[J]. Applied Thermal Engineering, 2020, 165: 114571. |
30 | 张天驰, 俞海云, 冒爱琴, 等. 有机相变储能材料导热增强方法研究进展[J]. 过程工程学报, 2017, 17(1): 201-208. |
Zhang T C, Yu H Y, Mao A Q, et al. Research advances in organic phase change materials for technology of thermal enhancement[J]. The Chinese Journal of Process Engineering, 2017, 17(1): 201-208. | |
31 | Kibria M A, Anisur M R, Mahfuz M H, et al. A review on thermophysical properties of nanoparticle dispersed phase change materials[J]. Energy Conversion and Management, 2015, 95: 69-89. |
32 | Sahan N, Fois M, Paksoy H. Improving thermal conductivity phase change materials-a study of paraffin nanomagnetite composites[J]. Solar Energy Materials and Solar Cells, 2015, 137: 61-67. |
33 | Li M. A nano-graphite/paraffin phase change material with high thermal conductivity[J]. Applied Energy, 2013, 106: 25-30. |
34 | İnce S, Seki Y, Ezan M A, et al. Thermal properties of myristic acid/graphite nanoplates composite phase change materials[J]. Renewable Energy, 2015, 75: 243-248. |
35 | Li T X, Lee J H, Wang R Z, et al. Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes[J]. Energy, 2013, 55: 752-761. |
36 | Salunkhe P B, Shembekar P S. A review on effect of phase change material encapsulation on the thermal performance of a system[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5603-5616. |
37 | Numerical simulation on thermal energy storage behavior of Cu/paraffin nanofluids PCMs[J]. Procedia Engineering, 2012, 31: 240-244. |
38 | Owolabi A L, Al-Kayiem H H, Baheta A T. Nanoadditives induced enhancement of the thermal properties of paraffin-based nanocomposites for thermal energy storage[J]. Solar Energy, 2016, 135: 644-653. |
39 | Yang Y Y, Luo J, Song G L, et al. The experimental exploration of nano-Si3N4/paraffin on thermal behavior of phase change materials[J]. Thermochimica Acta, 2014, 597: 101-106. |
40 | Harish S, Orejon D, Takata Y, et al. Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets[J]. Applied Thermal Engineering, 2015, 80: 205-211. |
41 | Harish S, Orejon D, Takata Y, et al. Thermal conductivity enhancement of lauric acid phase change nanocomposite in solid and liquid state with single-walled carbon nanohorn inclusions[J]. Thermochimica Acta, 2015, 600: 1-6. |
42 | Harikrishnan S, Kalaiselvam S. Preparation and thermal characteristics of CuO-oleic acid nanofluids as a phase change material[J]. Thermochimica Acta, 2012, 533: 46-55. |
43 | Zhang N, Yuan Y P, Yuan Y G, et al. Effect of carbon nanotubes on the thermal behavior of palmitic-stearic acid eutectic mixtures as phase change materials for energy storage[J]. Solar Energy, 2014, 110: 64-70. |
44 | 刘硕, 张东. 纳米胶囊相变材料研究进展[J]. 化学通报, 2008, 71(12): 906-911. |
Liu S, Zhang D. Progress of the nano-encapsulated phase change materials[J]. Chemistry, 2008, 71(12): 906-911. | |
45 | Fang Y, Yu H, Wan W, et al. Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials[J]. Energy Conversion and Management, 2013, 76: 430-436. |
46 | 王瑞杰, 李晖, 金兆国, 等. 基于相变微胶囊材料的优化与热控应用研究[J]. 复合材料科学与工程, 2020(4): 101-105. |
47 | Wang R J, Li H, Jin Z G, et al. Preparation and application study of modified phase change microcapsule in thermal control field[J]. Composites Science and Engineering, 2020(4): 101-105. |
48 | 楼樱红. 溶胶-凝胶法制备相变微胶囊及其在织物上的应用[D]. 上海: 东华大学, 2013. |
Lou Y H. Preparation and application of phase change microcapsules on fabric by sol-gel technology[D]. Shanghai: Donghua University, 2013. | |
49 | 李建立, 薛平, 韩晋民, 等. 微胶囊化相变材料的制备与评价方法[J]. 精细化工, 2007, 24(9): 843-847. |
Li J L, Xue P, Han J M, et al. Preparation and evaluation methods of microencapsulated phase change materials[J]. Fine Chemicals, 2007, 24(9): 843-847. | |
50 | Krishna J, Kishore P S, Solomon A B. Heat pipe with nano enhanced-PCM for electronic cooling application[J]. Experimental Thermal and Fluid Science, 2017, 81: 84-92. |
51 | Wang H F, Wang F, Li Z, et al. Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material[J]. Applied Energy, 2016, 176: 221-232. |
52 | Muhammad A H, Hafiz M A, Muhammad M J, et al. Phase change material/heat pipe and copper foam-based heat sinks for thermal management of electronic systems[J]. Journal of Energy Storage, 2020, 32: 101971. |
53 | Feng R L, Huang P F, Tang Z Y, et al. Experimental and numerical study on the cooling performance of heat pipe assisted composite phase change material-based battery thermal management system[J]. Energy Conversion and Management, 2022, 272: 116359. |
54 | Chougule S S, Sahu S K. Thermal performance of nanofluid charged heat pipe with phase change material for electronics cooling[J]. Journal of Electronic Packaging, 2015, 137(2): 021004. |
55 | Liu Y, Zheng R W, Tian T, et al. Characteristics of thermal storage heat pipe charged with graphene nanoplatelets enhanced organic phase change material[J]. Energy Conversion and Management, 2022, 267: 115902. |
56 | Zhang C W, Yu M, Fan Y B, et al. Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe[J]. Energy, 2020, 195: 116809. |
57 | 田东民, 吴延鹏, 陈凤君. 基于纳米增强相变材料的铜-水热管传热性能分析[J]. 化工学报, 2020, 71(S1): 220-226. |
Tian D M, Wu Y P, Chen F J. Analysis of heat transfer performance of copper-water heat pipe based on nano enhanced-PCM[J]. CIESC Journal, 2020, 71(S1): 220-226. |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[4] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[5] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[6] | Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689. |
[7] | Bin DONG, Yonghao XUE, Kunfeng LIANG, Zhengyin YUAN, Lin WANG, Xun ZHOU. Experimental study on spray heat transfer characteristics of microencapsulated phase change material suspension [J]. CIESC Journal, 2022, 73(7): 2971-2981. |
[8] | Chaoyu SONG, Yaxuan XIONG, Jinhua ZHANG, Yuhe JIN, Chenhua YAO, Huixiang WANG, Yulong DING. Preparation and performance study of incinerated slag based shape-stable phase change composites [J]. CIESC Journal, 2022, 73(5): 2279-2287. |
[9] | Hao ZHANG, Jiao WANG, Ting MA, Xinyi LI, Jun LIU, Qiuwang WANG. Experimental investigation on phase change heat transfer of paraffin composited with porous graphite under supergravity [J]. CIESC Journal, 2021, 72(9): 4523-4530. |
[10] | Ken LIN, Xiaoyong XU, Qiang LI, Dinghua HU. Study on thermal conductivity of paraffin-expanded graphite composite phase change materials [J]. CIESC Journal, 2021, 72(8): 4425-4432. |
[11] | Lingshuai BU, Zhiguo QU, Hongtao XU, Man JIN. Experimental study of cooling discharging characteristics of the energy storage system filled with MPCM slurry [J]. CIESC Journal, 2021, 72(8): 4064-4072. |
[12] | XIONG Yaxuan, QIAN Xiangyao, LI Shuo, SUN Mingyuan, WANG Zhenyu, WU Yuting, XU Peng, DING Yulong, MA Chongfang. Effect of preparation methods on thermal energy storage performance and formation mechanism of molten salt nanofluids [J]. CIESC Journal, 2021, 72(5): 2857-2868. |
[13] | LI Wei, WANG Qiuwang, ZENG Min. Performance test and numerical study of salt hydrate-based thermochemical heat storage materials at middle-low temperature [J]. CIESC Journal, 2021, 72(5): 2763-2772. |
[14] | LU Zhibin, XIE Xing, LU Sida, HE Chang, ZHANG Bingjian, CHEN Qinglin. Surrogate model-based optimal design of multi-stage nanofiltration separation system for saline wastewater [J]. CIESC Journal, 2021, 72(3): 1400-1408. |
[15] | AN Guanglu, LIU Yongzhong, KANG Lixia. Optimal design of synthetic ammonia production system powered by renewable energy for seasonal demands of ammonia [J]. CIESC Journal, 2021, 72(3): 1595-1605. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||