CIESC Journal ›› 2023, Vol. 74 ›› Issue (10): 4330-4342.DOI: 10.11949/0438-1157.20230584
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Xinqi ZHANG1,2(), Chen ZHANG2, Duoyong ZHANG2, Tao XUAN2, Zhuozhen GAN2, Xuancan ZHU2, Liwei WANG2()
Received:
2023-06-19
Revised:
2023-09-15
Online:
2023-12-22
Published:
2023-10-25
Contact:
Liwei WANG
张鑫琦1,2(), 张宸2, 张舵咏2, 宣涛2, 干桌臻2, 朱炫灿2, 王丽伟2()
通讯作者:
王丽伟
作者简介:
张鑫琦(1997—),男,硕士研究生,550144979@sjtu.edu.cn
基金资助:
CLC Number:
Xinqi ZHANG, Chen ZHANG, Duoyong ZHANG, Tao XUAN, Zhuozhen GAN, Xuancan ZHU, Liwei WANG. Study on the carbon capture performance of highly selective PEI@MOF-808 adsorbent in humid flue gas[J]. CIESC Journal, 2023, 74(10): 4330-4342.
张鑫琦, 张宸, 张舵咏, 宣涛, 干桌臻, 朱炫灿, 王丽伟. 高选择性PEI@MOF-808吸附剂在潮湿烟气中的碳捕集性能研究[J]. 化工学报, 2023, 74(10): 4330-4342.
样品名称 | 比表面积/ (m2/g) | 全孔体积/ (cm3/g) | 微孔体积/ (cm3/g) |
---|---|---|---|
M-808 | 1742.09 | 1.04 | 0.60 |
PEI300-10@M-808 | 105.58 | 0.28 | 0.01 |
PEI300-20@M-808 | 74.83 | 0.29 | 0 |
PEI300-30@M-808 | 48.30 | 0.18 | 0 |
Table 1 Textural properties of PEI300-y@M-808
样品名称 | 比表面积/ (m2/g) | 全孔体积/ (cm3/g) | 微孔体积/ (cm3/g) |
---|---|---|---|
M-808 | 1742.09 | 1.04 | 0.60 |
PEI300-10@M-808 | 105.58 | 0.28 | 0.01 |
PEI300-20@M-808 | 74.83 | 0.29 | 0 |
PEI300-30@M-808 | 48.30 | 0.18 | 0 |
样品名称 | PEI实际负载量/ %(质量) | 0.1 bar CO2吸附量/(mmol/g) | 1 bar CO2吸附量/(mmol/g) | 0.1 bar CO2/N2选择性 | 1 bar CO2/N2选择性 | 0.1 bar胺效率/(mol/mol) |
---|---|---|---|---|---|---|
M-808 | — | 0.052 | 0.51 | 96.69 | 110.29 | — |
PEI300-10@M-808 | 6.81 | 0.63 | 1.06 | 2574.39 | 609.79 | 0.34 |
PEI300-20@M-808 | 16.19 | 0.78 | 1.21 | 4480.93 | 851.27 | 0.22 |
PEI300-30@M-808 | 24.25 | 0.89 | 1.29 | 5524.65 | 1043.86 | 0.16 |
Table 2 CO2 sorption capacity, CO2/N2 selectivity and amine efficiency of PEI300-y@M-808 at 343 K
样品名称 | PEI实际负载量/ %(质量) | 0.1 bar CO2吸附量/(mmol/g) | 1 bar CO2吸附量/(mmol/g) | 0.1 bar CO2/N2选择性 | 1 bar CO2/N2选择性 | 0.1 bar胺效率/(mol/mol) |
---|---|---|---|---|---|---|
M-808 | — | 0.052 | 0.51 | 96.69 | 110.29 | — |
PEI300-10@M-808 | 6.81 | 0.63 | 1.06 | 2574.39 | 609.79 | 0.34 |
PEI300-20@M-808 | 16.19 | 0.78 | 1.21 | 4480.93 | 851.27 | 0.22 |
PEI300-30@M-808 | 24.25 | 0.89 | 1.29 | 5524.65 | 1043.86 | 0.16 |
样品名称 | CO2拟合参数 | N2拟合参数 | ||||||
---|---|---|---|---|---|---|---|---|
qmax/(mmol/g) | KL-F | n | R2 | qmax/(mmol/g) | KL-F | n | R2 | |
M-808 | 1.040 | 0.81 | 0.8009 | 0.9926 | 0.184 | 0.280 | 1.0001 | 0.9998 |
PEI300-10@M-808 | 1.076 | 15.46 | 0.8938 | 0.9710 | 0.055 | 0.374 | 1.0038 | 0.9999 |
PEI300-20@M-808 | 1.266 | 11.01 | 1.1954 | 0.9690 | 0.044 | 0.373 | 1.0043 | 0.9999 |
PEI300-30@M-808 | 1.297 | 24.62 | 0.9557 | 0.9845 | 0.040 | 0.372 | 1.0043 | 0.9999 |
Table 3 Parameters obtained by fitting the PEI300-y@M-808 isotherm with the Langmuir/Freundlich model
样品名称 | CO2拟合参数 | N2拟合参数 | ||||||
---|---|---|---|---|---|---|---|---|
qmax/(mmol/g) | KL-F | n | R2 | qmax/(mmol/g) | KL-F | n | R2 | |
M-808 | 1.040 | 0.81 | 0.8009 | 0.9926 | 0.184 | 0.280 | 1.0001 | 0.9998 |
PEI300-10@M-808 | 1.076 | 15.46 | 0.8938 | 0.9710 | 0.055 | 0.374 | 1.0038 | 0.9999 |
PEI300-20@M-808 | 1.266 | 11.01 | 1.1954 | 0.9690 | 0.044 | 0.373 | 1.0043 | 0.9999 |
PEI300-30@M-808 | 1.297 | 24.62 | 0.9557 | 0.9845 | 0.040 | 0.372 | 1.0043 | 0.9999 |
34 | Kang J H, Yoon T U, Kim S Y, et al. Extraordinarily selective adsorption of CO2 over N2 in a polyethyleneimine-impregnated NU-1000 material[J]. Microporous and Mesoporous Materials, 2019, 281: 84-91. |
35 | Zhu H J, Xue W J, Huang H L, et al. Water boosted CO2/C2H2 separation in L-arginine functionalized metal-organic framework[J]. Nano Research, 2023, 16(5): 6113-6119. |
36 | Lee J J, Chen C H, Shimon D, et al. Effect of humidity on the CO2 adsorption of tertiary amine grafted SBA-15[J]. The Journal of Physical Chemistry C, 2017, 121(42): 23480-23487. |
37 | Didas S A, Sakwa-Novak M A, Foo G S, et al. Effect of amine surface coverage on the co-adsorption of CO2 and water: spectral deconvolution of adsorbed species[J]. The Journal of Physical Chemistry Letters, 2014, 5(23): 4194-4200. |
38 | Zhang G J, Zhao P Y, Hao L X, et al. A novel amine double functionalized adsorbent for carbon dioxide capture using original mesoporous silica molecular sieves as support[J]. Separation and Purification Technology, 2019, 209: 516-527. |
1 | Quan C, Chu H, Zhou Y Y, et al. Amine-modified silica zeolite from coal gangue for CO2 capture[J]. Fuel, 2022, 322: 124184. |
2 | Ochedi F O, Yu J L, Yu H, et al. Carbon dioxide capture using liquid absorption methods: a review[J]. Environmental Chemistry Letters, 2021, 19(1): 77-109. |
3 | Dutcher B, Fan M H, Russell A G. Amine-based CO2 capture technology development from the beginning of 2013—a review[J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2137-2148. |
4 | Wang M H, Joel A S, Ramshaw C, et al. Process intensification for post-combustion CO2 capture with chemical absorption: a critical review[J]. Applied Energy, 2015, 158: 275-291. |
5 | Samanta A, Zhao A, Shimizu G K H, et al. Post-combustion CO2 capture using solid sorbents: a review[J]. Industrial & Engineering Chemistry Research, 2012, 51(4): 1438-1463. |
6 | Zhang C, Zhang Y H, Su T Y, et al. Molecular simulation on carbon dioxide capture performance for carbons doped with various elements[J]. Energy Storage and Saving, 2023, 2(2): 435-441. |
7 | Wurzbacher J A, Gebald C, Steinfeld A. Separation of CO2 from air by temperature-vacuum swing adsorption using diamine-functionalized silica gel[J]. Energy & Environmental Science, 2011, 4(9): 3584-3592. |
8 | Hudson M R, Queen W L, Mason J A, et al. Unconventional, highly selective CO2 adsorption in zeolite SSZ-13[J]. Journal of the American Chemical Society, 2012, 134(4): 1970-1973. |
9 | Boyd P G, Chidambaram A, García-Díez E, et al. Data-driven design of metal-organic frameworks for wet flue gas CO2 capture[J]. Nature, 2019, 576(7786): 253-256. |
10 | González-Zamora E, Ibarra I A. CO2 capture under humid conditions in metal-organic frameworks[J]. Materials Chemistry Frontiers, 2017, 1(8): 1471-1484. |
11 | Trickett C A, Helal A, Al-Maythalony B A, et al. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion[J]. Nature Reviews Materials, 2017, 2: 17045. |
12 | Lei L, Cheng Y, Chen C W, et al. Taming structure and modulating carbon dioxide (CO2) adsorption isosteric heat of nickel-based metal organic framework (MOF-74(Ni)) for remarkable CO2 capture[J]. Journal of Colloid and Interface Science, 2022, 612: 132-145. |
13 | Zheng W J, Ding R, Dai Y, et al. Regulating the pore engineering of MOFs by the confined dissolving of PSA template to improve CO2 capture[J]. Journal of Membrane Science, 2023, 670: 121373. |
14 | Jun H J, Yoo D K, Jhung S H. Metal-organic framework (MOF-808) functionalized with ethyleneamines: selective adsorbent to capture CO2 under low pressure[J]. Journal of CO2 Utilization, 2022, 58: 101932. |
15 | Xian S K, Wu Y, Wu J L, et al. Enhanced dynamic CO2 adsorption capacity and CO2/CH4 selectivity on polyethylenimine-impregnated UiO-66[J]. Industrial & Engineering Chemistry Research, 2015, 54(44): 11151-11158. |
16 | Su X A, Bromberg L, Martis V, et al. Postsynthetic functionalization of Mg-MOF-74 with tetraethylenepentamine: structural characterization and enhanced CO2 adsorption[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 11299-11306. |
17 | Sanjit G, Yeonhee K, Ranjit G, et al. Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105523. |
18 | Miao Y H, Wang Y Z, Ge B Y, et al. Mixed diethanolamine and polyethyleneimine with enhanced CO2 capture capacity from air[J]. Advanced Science, 2023, 10(16): 2207253. |
19 | Zhu J J, Wu L B, Bu Z Y, et al. Polyethyleneimine-modified UiO-66-NH2(Zr) metal-organic frameworks: preparation and enhanced CO2 selective adsorption[J]. ACS Omega, 2019, 4(2): 3188-3197. |
20 | Xian S K, Xu F, Ma C, et al. Vapor-enhanced CO2 adsorption mechanism of composite PEI@ZIF-8 modified by polyethyleneimine for CO2/N2 separation[J]. Chemical Engineering Journal, 2015, 280: 363-369. |
21 | Pander M, Gil-San-Millan R, Delgado P, et al. MOF/polymer hybrids through in situ free radical polymerization in metal-organic frameworks[J]. Materials Horizons, 2023, 10(4): 1301-1308. |
22 | Lam I T Y, Choi S, Lu D, et al. Functionalized metal-organic frameworks for heavy metal ion removal from water[J]. Nanoscale, 2023, 15(24): 10189-10205. |
23 | Park J M, Yoo D K, Jhung S H. Selective CO2 adsorption over functionalized Zr-based metal organic framework under atmospheric or lower pressure: contribution of functional groups to adsorption[J]. Chemical Engineering Journal, 2020, 402: 126254. |
24 | Lyu H, Chen O I F, Hanikel N, et al. Carbon dioxide capture chemistry of amino acid functionalized metal-organic frameworks in humid flue gas[J]. Journal of the American Chemical Society, 2022, 144(5): 2387-2396. |
25 | Ahmed S, Ramli A, Yusup S, et al. Adsorption behavior of tetraethylenepentamine-functionalized Si-MCM-41 for CO2 adsorption[J]. Chemical Engineering Research and Design, 2017, 122: 33-42. |
26 | Hiroyasu F, Felipe G, Zhang Y B, et al. Water adsorption in porous metal-organic frameworks and related materials[J]. Journal of the American Chemical Society, 2014, 136(11): 4369-4381. |
27 | Rojas-Buzo S, García-García P, Corma A. Zr-MOF-808@MCM-41 catalyzed phosgene-free synthesis of polyurethane precursors[J]. Catalysis Science & Technology, 2019, 9(1): 146-156. |
28 | Hao Y X, Li J S, Yang X J, et al. Preparation of ZrO2-Al2O3 composite membranes by sol-gel process and their characterization[J]. Materials Science and Engineering: A, 2004, 367(1/2): 243-247. |
29 | Elvira M R, Mazo M A, Tamayo A, et al. Study and characterization of organically modified silica-zirconia anti-graffiti coatings obtained by sol-gel[J]. Journal of Chemistry and Chemical Engineering, 2013, 7(2): 120. |
30 | DeCoste J B, Peterson G W, Jasuja H, et al. Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit[J]. Journal of Materials Chemistry A, 2013, 1(18): 5642-5650. |
31 | Lin Y C, Lin H, Wang H M, et al. Enhanced selective CO2 adsorption on polyamine/MIL-101(Cr) composites[J]. Journal of Materials Chemistry A, 2014, 2(35): 14658-14665. |
32 | Li Z, Chen H F, Chen C, et al. High dispersion of polyethyleneimine within mesoporous UiO-66s through pore size engineering for selective CO2 capture[J]. Chemical Engineering Journal, 2019, 375: 121962. |
33 | Russel W W. The adsorption of gases and vapors(Ⅰ): Physical adsorption (Brunauer, Stephen)[J]. Journal of Chemical Education, 1944, 21(1): 52. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[3] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[4] | Guohua SHI, Linshen HE, Xiling ZHAO, Shigang ZHANG. Study of removal characteristics of particulate matters within flue gas by spray tower for waste-heat recovery [J]. CIESC Journal, 2023, 74(4): 1735-1745. |
[5] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[6] | Min LI, Xueru YAN, Xinlei LIU. Advances in benzimidazole-linked polymer adsorbents and membranes [J]. CIESC Journal, 2023, 74(2): 599-616. |
[7] | Shaozhuang WANG, Dunxi YU, Jiayi LI, Jingkun HAN, Xin YU, Fangqi LIU. Effects of torrefaction with flue gas on grindability of corn stalk [J]. CIESC Journal, 2023, 74(2): 861-870. |
[8] | Shanbin GAO, Mengchen LI, Hongyue YU, Yuge SHEN, Liang QIAO, Kebin CHI, Dejun SHI. In-situ acid regulation and hydroisomerization performance of Pt/ZSM-22 catalyst [J]. CIESC Journal, 2023, 74(10): 4164-4172. |
[9] | Muzi LI, Guowei JIA, Yanlong ZHAO, Xin ZHANG, Jianrong LI. The progress of metal-organic frameworks for non-CO2 greenhouse gases capture [J]. CIESC Journal, 2023, 74(1): 365-379. |
[10] | Junying YAN, Huangying WANG, Ruirui LI, Rong FU, Chenxiao JIANG, Yaoming WANG, Tongwen XU. Selective electrodialysis: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 224-236. |
[11] | Houchuan YU, Teng REN, Ning ZHANG, Xiaobin JIANG, Yan DAI, Xiaopeng ZHANG, Junjiang BAO, Gaohong HE. Advances in two-dimensional graphene oxide membrane for ion selective transport [J]. CIESC Journal, 2023, 74(1): 303-312. |
[12] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
[13] | Dan GUO, Yujie FANG, Yihan XU, Zhiyuan LI, Shouying HUANG, Shengping WANG, Xinbin MA. Research progress of the catalytic conversion of ethane and carbon dioxide [J]. CIESC Journal, 2022, 73(8): 3406-3416. |
[14] | Hongxin YANG, Xingya LI, Liang GE, Tongwen XU. Preparation of mono-/divalent anion permselective membranes with piperidinium-type long side-chain [J]. CIESC Journal, 2022, 73(8): 3739-3748. |
[15] | Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress of membrane separation materials for different industrial CO2-containing mixtures [J]. CIESC Journal, 2022, 73(8): 3417-3432. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 813
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 474
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||