CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 138-158.DOI: 10.11949/0438-1157.20230652
• Reviews and monographs • Previous Articles Next Articles
Jiao ZHU1,2,3(), Liping LUAN1,2,3, Shenzhen CONG1,2,3, Xinlei LIU1,2,3()
Received:
2023-06-30
Revised:
2023-08-18
Online:
2024-03-11
Published:
2024-01-25
Contact:
Xinlei LIU
朱娇1,2,3(), 栾丽萍1,2,3, 从深震1,2,3, 刘新磊1,2,3()
通讯作者:
刘新磊
作者简介:
朱娇(1999—),女,硕士研究生,zj20191007@qq.com
基金资助:
CLC Number:
Jiao ZHU, Liping LUAN, Shenzhen CONG, Xinlei LIU. Organic membranes for H2 separation[J]. CIESC Journal, 2024, 75(1): 138-158.
朱娇, 栾丽萍, 从深震, 刘新磊. 氢气分离有机膜[J]. 化工学报, 2024, 75(1): 138-158.
Add to citation manager EndNote|Ris|BibTeX
公司 | 膜材料 | 膜组件 |
---|---|---|
Permea(Air Products) | 聚砜,聚酰亚胺 | 中空纤维式 |
Medal(Air Liquide) | 聚酰亚胺,聚芳酰胺 | 中空纤维式 |
Ube | 聚酰亚胺 | 中空纤维式 |
Monsanto | 聚砜-硅橡胶 | 中空纤维式 |
Separex | 醋酸纤维素 | 螺旋卷式 |
大连化学物理研究所(天邦) | 聚砜,聚酰亚胺 | 中空纤维式/卷式 |
Table 1 Main manufacturers of organic membranes for H2 separation[8-11]
公司 | 膜材料 | 膜组件 |
---|---|---|
Permea(Air Products) | 聚砜,聚酰亚胺 | 中空纤维式 |
Medal(Air Liquide) | 聚酰亚胺,聚芳酰胺 | 中空纤维式 |
Ube | 聚酰亚胺 | 中空纤维式 |
Monsanto | 聚砜-硅橡胶 | 中空纤维式 |
Separex | 醋酸纤维素 | 螺旋卷式 |
大连化学物理研究所(天邦) | 聚砜,聚酰亚胺 | 中空纤维式/卷式 |
聚合物 | 生产厂家 | 温度/℃ | 压力/atm | H2渗透系数/Barrer | 选择性 | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
H2/CO2 | H2/N2 | H2/CH4 | H2/O2 | ||||||
Matrimid®5218 | Vantico Inc. (Luxemburg) | 35 | 3.5① | 27.16 | 3.88 | 97.00 | 129.33 | [ | |
CA 320S | 35 | 1 | 12 | 2.53 | 80 | 80 | 14.63 | [ | |
CA 398-30 | 35 | 1 | 6.05 | 3.29 | 106.14 | 116.35 | 18.91 | [ | |
CA 435-75 | 35 | 1 | 15.5 | 2.36 | 67.39 | 77.5 | 10.62 | [ | |
Victrex 600P | ICI | 90 | [ | ||||||
UDEL 3500 | Union Carbide | 90 | [ | ||||||
SU341025 | Goodfellow & Co. | 35 | 20 | 14.5 | 58 | 58 | 10.14 | [ | |
Radel® A PES | Solvay Advanced Polymers L.L.C., GA, USA | 35 | 3.5 | 8.96 | 2.65 | 69.5 | 80 | 11.59 | [ |
乙基纤维素 | 30 | 87 | 3.28 | [ | |||||
聚砜 | 30 | 14 | 2.50 | [ | |||||
聚醚酰亚胺 | 30 | 7.8 | 5.91 | [ | |||||
聚甲基戊烯 | 30 | 125 | 1.48 | [ | |||||
聚苯醚 | 30 | 113 | 1.49 | [ | |||||
PPO | 61 | 1 | 14.19 | 14.88 | 3.63 | [ | |||
Lenzing P84 | [ | ||||||||
聚酰胺酰亚胺 | [ | ||||||||
聚砜-硅橡胶 | Monsanto | 39 | 24 | [ | |||||
聚酰亚胺 | Ube | 35.4 | [ | ||||||
醋酸纤维素 | Separex | 33 | 26 | [ | |||||
聚二甲基硅氧烷 | [ |
Table 2 Typical commercial organic membranes for H2 separation and their performance
聚合物 | 生产厂家 | 温度/℃ | 压力/atm | H2渗透系数/Barrer | 选择性 | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
H2/CO2 | H2/N2 | H2/CH4 | H2/O2 | ||||||
Matrimid®5218 | Vantico Inc. (Luxemburg) | 35 | 3.5① | 27.16 | 3.88 | 97.00 | 129.33 | [ | |
CA 320S | 35 | 1 | 12 | 2.53 | 80 | 80 | 14.63 | [ | |
CA 398-30 | 35 | 1 | 6.05 | 3.29 | 106.14 | 116.35 | 18.91 | [ | |
CA 435-75 | 35 | 1 | 15.5 | 2.36 | 67.39 | 77.5 | 10.62 | [ | |
Victrex 600P | ICI | 90 | [ | ||||||
UDEL 3500 | Union Carbide | 90 | [ | ||||||
SU341025 | Goodfellow & Co. | 35 | 20 | 14.5 | 58 | 58 | 10.14 | [ | |
Radel® A PES | Solvay Advanced Polymers L.L.C., GA, USA | 35 | 3.5 | 8.96 | 2.65 | 69.5 | 80 | 11.59 | [ |
乙基纤维素 | 30 | 87 | 3.28 | [ | |||||
聚砜 | 30 | 14 | 2.50 | [ | |||||
聚醚酰亚胺 | 30 | 7.8 | 5.91 | [ | |||||
聚甲基戊烯 | 30 | 125 | 1.48 | [ | |||||
聚苯醚 | 30 | 113 | 1.49 | [ | |||||
PPO | 61 | 1 | 14.19 | 14.88 | 3.63 | [ | |||
Lenzing P84 | [ | ||||||||
聚酰胺酰亚胺 | [ | ||||||||
聚砜-硅橡胶 | Monsanto | 39 | 24 | [ | |||||
聚酰亚胺 | Ube | 35.4 | [ | ||||||
醋酸纤维素 | Separex | 33 | 26 | [ | |||||
聚二甲基硅氧烷 | [ |
工业应用 | 分离组分 | 文献 |
---|---|---|
合成气比例调整 | H2/CO | [ |
合成氨弛放气中回收氢气 | H2/N2 | [ |
电解水制氢中纯化氢气 | H2/O2 | [ |
光催化制氢中分离氢气 | H2/O2 | [ |
炼厂气中回收氢气 | H2/轻烃 | [ |
甲醇裂解制氢中纯化氢气 | H2/CO2、CO、CH4 | [ |
生物质制氢中纯化氢气 | H2/O2、CO2、H2O | [ |
煤制甲醇中回收氢气 | H2/CO、CO2、N2、H2O、Ar | [ |
Table 3 Industrial application of organic membranes for H2 separation
工业应用 | 分离组分 | 文献 |
---|---|---|
合成气比例调整 | H2/CO | [ |
合成氨弛放气中回收氢气 | H2/N2 | [ |
电解水制氢中纯化氢气 | H2/O2 | [ |
光催化制氢中分离氢气 | H2/O2 | [ |
炼厂气中回收氢气 | H2/轻烃 | [ |
甲醇裂解制氢中纯化氢气 | H2/CO2、CO、CH4 | [ |
生物质制氢中纯化氢气 | H2/O2、CO2、H2O | [ |
煤制甲醇中回收氢气 | H2/CO、CO2、N2、H2O、Ar | [ |
膜名称 | 温度/℃ | 压力/atm | H2渗透系数/Barrer | 选择性 | 气体组成 | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
H2/CO2 | H2/N2 | H2/CH4 | H2/O2 | ||||||
PDMA-MA PI | 350 | 2 | 63.45 | 18.7 | 混合气 | [ | |||
Ac-CoPI-TB-2 | 200 | 10 | 1848 | 3.7 | 混合气 | [ | |||
PI-TB-N | 200 | 10 | 2255 | 3.45 | 混合气 | [ | |||
BCBr4-SBIDA | 35 | 2 | 274 | 1.99 | 52 | 55 | 8.78 | 纯气体 | [ |
6FDA-SBIDA | 35 | 2 | 181 | 1.52 | 33 | 53 | 7.61 | 纯气体 | [ |
CpODA-DAT | 35 | 1 | 608 | 2.31 | 30.7 | 34.2 | 6.89 | 纯气体 | [ |
CpODA-DAPI | 35 | 1 | 166 | 3.06 | 47.5 | 57.3 | 7.98 | 纯气体 | [ |
6FDA-IPD PHI | 35 | 4 | 39.3 | 9.4 | 纯气体 | [ | |||
BPDA-IPD PHI | 35 | 4 | 4.9 | 24.5 | 纯气体 | [ | |||
PIP-TMC-KRO | 23 | 1 | 6.73 | 10.1 | 312 | 311.67 | 39.85 | 纯气体 | [ |
PPD-TMC-KRO | 23 | 1 | 5.87 | 10.8 | 296 | 362.22 | 49.3 | 纯气体 | [ |
EDA-PI | 35 | 3.5 | 32.6 | 102 | 纯气体 | [ | |||
EDA-PI | 35 | 3.5① | 19.4 | 16.6 | 混合气 | [ | |||
TB-MSBC | 35 | 3.5 | 310.6 | 1.9 | 27.4 | 31.9 | [ | ||
6FDA-mPD | 35 | 10 | 40.2 | 4.4 | 89.9 | 252 | 纯气体 | [ | |
6FDA-6HpDA | 35 | 1 | 65 | 1.8 | 45.1 | 77.4 | 纯气体 | [ | |
6FDA-2,6-DATr | 35 | 6.8 | 106.6 | 2.5 | 115 | 混合气 | [ | ||
6FDA-terphenyl | 35 | 3.5 | 45.64 | 2.12 | 44.75 | 61.1 | 纯气体 | [ | |
6FDA-biphenylb | 35 | 3.5 | 34.28 | 2.64 | 55.65 | 95.7 | 纯气体 | [ | |
BAPB-10 | 36 | 6 | 32.2 | 1.22 | 68.51 | 69.3 | 纯气体 | [ | |
T-PI | 1 | 518 | 0.64 | 9.25 | 15.7 | 纯气体 | [ | ||
P84-PDMS-3A | 35 | 1 | 20.85 | 5.72 | 98.77 | 231.92 | 纯气体 | [ | |
300s-3L-PEI | 30 | 2 | 10.4 | 2.08 | 308 | 纯气体 | [ | ||
PEI-HF | 25 | 8 | 107.52② | 5.6 | 混合气 | [ | |||
DA0-MAT | 35 | 2 | 13.9 | 5 | 152 | 186 | 15.44 | 纯气体 | [ |
FDA1-MAT | 35 | 2 | 47 | 3.36 | 98 | 119 | 15.16 | 纯气体 | [ |
BCDA-ODA | 30 | 41.41 | 3.7 | 57.51 | 121.79 | 15.45 | 纯气体 | [ | |
DOCDA-ODA | 30 | 9.84 | 4.33 | 175.71 | 258.95 | 20.5 | 纯气体 | [ | |
HAB-6FDA | 37 | 2.7 | 73.7 | 3.2 | 29.0 | 54.6 | 15.04 | 纯气体 | [ |
GEN7 | 300 | 10 | 391.5 | 7.6 | 混合气 | [ | |||
[HF-PEI10/PAA4]20 | TR | 1 | 58.68 | >200 | >2000 | 混合气 | [ | ||
[f-HF-PEI10/PAA4]5 | TR | 1 | 179.55 | >200 | 61.6 | 混合气 | [ | ||
XLP84-6h | 100 | 1 | 47 | 14 | 纯气体 | [ | |||
PEI | 30 | 5 | 6.9 | 4.42 | 133 | 238 | 18.16 | 纯气体 | [ |
6FDA-PPDA(CH3) | 35 | 10 | 100 | 1.82 | 41.67 | 50 | 8.33 | 纯气体 | [ |
6FDA-1,4-trip_CF3 | 35 | 8.85 | 59.4 | 3 | 纯气体 | [ | |||
Matrimid®5218 | 35 | 3.5③ | 27.16 | 3.88 | 129.33 | 纯气体 | [ | ||
6FDA-FB | 35 | 6.8 | 73 | 2.12 | 60.83 | 104.29 | 纯气体 | [ |
Table 4 H2 separation properties of common PI membranes
膜名称 | 温度/℃ | 压力/atm | H2渗透系数/Barrer | 选择性 | 气体组成 | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
H2/CO2 | H2/N2 | H2/CH4 | H2/O2 | ||||||
PDMA-MA PI | 350 | 2 | 63.45 | 18.7 | 混合气 | [ | |||
Ac-CoPI-TB-2 | 200 | 10 | 1848 | 3.7 | 混合气 | [ | |||
PI-TB-N | 200 | 10 | 2255 | 3.45 | 混合气 | [ | |||
BCBr4-SBIDA | 35 | 2 | 274 | 1.99 | 52 | 55 | 8.78 | 纯气体 | [ |
6FDA-SBIDA | 35 | 2 | 181 | 1.52 | 33 | 53 | 7.61 | 纯气体 | [ |
CpODA-DAT | 35 | 1 | 608 | 2.31 | 30.7 | 34.2 | 6.89 | 纯气体 | [ |
CpODA-DAPI | 35 | 1 | 166 | 3.06 | 47.5 | 57.3 | 7.98 | 纯气体 | [ |
6FDA-IPD PHI | 35 | 4 | 39.3 | 9.4 | 纯气体 | [ | |||
BPDA-IPD PHI | 35 | 4 | 4.9 | 24.5 | 纯气体 | [ | |||
PIP-TMC-KRO | 23 | 1 | 6.73 | 10.1 | 312 | 311.67 | 39.85 | 纯气体 | [ |
PPD-TMC-KRO | 23 | 1 | 5.87 | 10.8 | 296 | 362.22 | 49.3 | 纯气体 | [ |
EDA-PI | 35 | 3.5 | 32.6 | 102 | 纯气体 | [ | |||
EDA-PI | 35 | 3.5① | 19.4 | 16.6 | 混合气 | [ | |||
TB-MSBC | 35 | 3.5 | 310.6 | 1.9 | 27.4 | 31.9 | [ | ||
6FDA-mPD | 35 | 10 | 40.2 | 4.4 | 89.9 | 252 | 纯气体 | [ | |
6FDA-6HpDA | 35 | 1 | 65 | 1.8 | 45.1 | 77.4 | 纯气体 | [ | |
6FDA-2,6-DATr | 35 | 6.8 | 106.6 | 2.5 | 115 | 混合气 | [ | ||
6FDA-terphenyl | 35 | 3.5 | 45.64 | 2.12 | 44.75 | 61.1 | 纯气体 | [ | |
6FDA-biphenylb | 35 | 3.5 | 34.28 | 2.64 | 55.65 | 95.7 | 纯气体 | [ | |
BAPB-10 | 36 | 6 | 32.2 | 1.22 | 68.51 | 69.3 | 纯气体 | [ | |
T-PI | 1 | 518 | 0.64 | 9.25 | 15.7 | 纯气体 | [ | ||
P84-PDMS-3A | 35 | 1 | 20.85 | 5.72 | 98.77 | 231.92 | 纯气体 | [ | |
300s-3L-PEI | 30 | 2 | 10.4 | 2.08 | 308 | 纯气体 | [ | ||
PEI-HF | 25 | 8 | 107.52② | 5.6 | 混合气 | [ | |||
DA0-MAT | 35 | 2 | 13.9 | 5 | 152 | 186 | 15.44 | 纯气体 | [ |
FDA1-MAT | 35 | 2 | 47 | 3.36 | 98 | 119 | 15.16 | 纯气体 | [ |
BCDA-ODA | 30 | 41.41 | 3.7 | 57.51 | 121.79 | 15.45 | 纯气体 | [ | |
DOCDA-ODA | 30 | 9.84 | 4.33 | 175.71 | 258.95 | 20.5 | 纯气体 | [ | |
HAB-6FDA | 37 | 2.7 | 73.7 | 3.2 | 29.0 | 54.6 | 15.04 | 纯气体 | [ |
GEN7 | 300 | 10 | 391.5 | 7.6 | 混合气 | [ | |||
[HF-PEI10/PAA4]20 | TR | 1 | 58.68 | >200 | >2000 | 混合气 | [ | ||
[f-HF-PEI10/PAA4]5 | TR | 1 | 179.55 | >200 | 61.6 | 混合气 | [ | ||
XLP84-6h | 100 | 1 | 47 | 14 | 纯气体 | [ | |||
PEI | 30 | 5 | 6.9 | 4.42 | 133 | 238 | 18.16 | 纯气体 | [ |
6FDA-PPDA(CH3) | 35 | 10 | 100 | 1.82 | 41.67 | 50 | 8.33 | 纯气体 | [ |
6FDA-1,4-trip_CF3 | 35 | 8.85 | 59.4 | 3 | 纯气体 | [ | |||
Matrimid®5218 | 35 | 3.5③ | 27.16 | 3.88 | 129.33 | 纯气体 | [ | ||
6FDA-FB | 35 | 6.8 | 73 | 2.12 | 60.83 | 104.29 | 纯气体 | [ |
膜名称 | 温度/℃ | 压力/atm | H2渗透系数/Barrer | 选择性 | 气体组成 | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
H2/CO2 | H2/N2 | H2/CH4 | H2/O2 | ||||||
TPBI-(H3PO4)0.98 | 150 | 7 | 46.7 | 16 | 混合气 | [ | |||
PBI-250 | 300 | 5 | 45 | 44 | 286 | 纯气体 | [ | ||
PBI-BuI | 35 | 20 | 10.7 | 5.6 | 176 | 208 | 25.48 | 纯气体 | [ |
XLPBI-6H | 200 | 11 | 39 | 23 | 纯气体 | [ | |||
PBI | 200 | 11 | 45 | 15 | 纯气体 | [ | |||
TADPS-TPA | 190 | 3 | 31 | 18 | 155 | 258.33 | 纯气体 | [ | |
TADPS-IPA | 190 | 3 | 30.1 | 24.6 | 177.06 | 358.3 | 纯气体 | [ | |
TADPS-OBA | 190 | 3 | 38 | 9.7 | 92.68 | 123.78 | 纯气体 | [ | |
m-PBI | 190 | 3 | 22.1 | 23.3 | 184.17 | 221 | 纯气体 | [ | |
Celazole® | 35 | 10 | 4 | 29 | 纯气体 | [ | |||
6F-PBI | 250 | 3.4 | 997.2 | 5.174 | 18.72 | 纯气体 | [ | ||
BTBP-PBI | 250 | 3.4 | 710.4 | 7.111 | 23.43 | 纯气体 | [ | ||
Phenylindane-PBI | 250 | 3.4 | 480.6 | 6.522 | 26.32 | 纯气体 | [ | ||
PFCB-PBI | 250 | 3.4 | 323.1 | 6.604 | 23.45 | 纯气体 | [ | ||
m-PBI | 250 | 3.4 | 76.81 | 23.03 | 98.32 | 纯气体 | [ | ||
PBDI | 150 | 1 | 72.3 | 23 | 混合气 | [ | |||
TBB-PBI | 150 | 14 | 9.6 | 24 | 混合气 | [ | |||
PBI-(H3PO4)0.16 | 150 | 14 | 12 | 34 | 混合气 | [ | |||
PBI w/40%(mass) PMF(250℃) | 250 | 2 | 56.8 | 12.9 | 82.32 | 混合气 | [ | ||
PBI-HFA | 24 | 7.74 | 121.3 | 2.4 | 纯气体 | [ | |||
[DMABPBI][I] | 35 | 20 | 1.58 | 12.2 | 纯气体 | [ | |||
[DMABPBI][BF4] | 35 | 20 | 2.53 | 6 | 纯气体 | [ | |||
PBI-HFA | 400 | 5~8 | 24.2 | 26.19 | 纯气体 | [ | |||
m-PBI | 250 | 3.4 | 88 | 47.6 | 233.6 | 混合气 | [ | ||
Celazole®+1-IM | 35 | 10 | 3.4 | 30.91 | 75.56 | 纯气体 | [ | ||
20/80 PI/PBI+1-IM | 35 | 10 | 3.6 | 41.86 | 87.80 | 纯气体 | [ | ||
Matrimid/PBI(1∶3) | 35 | 3.5① | 5.47 | 9.43 | 260.48 | 563.92 | 纯气体 | [ | |
fMatrimid/PBI(1∶3)-p-xylene diamine 10 days | 35 | 3.5① | 3.6 | 26.09 | 272.73 | 1161.29 | 纯气体 | [ | |
HFM-2 | 250 | 1.36 | 77.55 | 25.7 | 纯气体 | [ | |||
T-C-BILP | 200 | 1 | 6.35 | 56.3 | 混合气 | [ | |||
T-C-BILP | 250 | 1 | 21.95 | 28.5 | 混合气 | [ | |||
BILP-5 | TR | 1 | 362 | 16 | 14.1② | 混合气 | [ | ||
BILP-101x | 150 | 2 | 9.68 | 39.5 | 混合气 | [ |
Table 5 H2 separation properties of typical PBI and BILP membranes
膜名称 | 温度/℃ | 压力/atm | H2渗透系数/Barrer | 选择性 | 气体组成 | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
H2/CO2 | H2/N2 | H2/CH4 | H2/O2 | ||||||
TPBI-(H3PO4)0.98 | 150 | 7 | 46.7 | 16 | 混合气 | [ | |||
PBI-250 | 300 | 5 | 45 | 44 | 286 | 纯气体 | [ | ||
PBI-BuI | 35 | 20 | 10.7 | 5.6 | 176 | 208 | 25.48 | 纯气体 | [ |
XLPBI-6H | 200 | 11 | 39 | 23 | 纯气体 | [ | |||
PBI | 200 | 11 | 45 | 15 | 纯气体 | [ | |||
TADPS-TPA | 190 | 3 | 31 | 18 | 155 | 258.33 | 纯气体 | [ | |
TADPS-IPA | 190 | 3 | 30.1 | 24.6 | 177.06 | 358.3 | 纯气体 | [ | |
TADPS-OBA | 190 | 3 | 38 | 9.7 | 92.68 | 123.78 | 纯气体 | [ | |
m-PBI | 190 | 3 | 22.1 | 23.3 | 184.17 | 221 | 纯气体 | [ | |
Celazole® | 35 | 10 | 4 | 29 | 纯气体 | [ | |||
6F-PBI | 250 | 3.4 | 997.2 | 5.174 | 18.72 | 纯气体 | [ | ||
BTBP-PBI | 250 | 3.4 | 710.4 | 7.111 | 23.43 | 纯气体 | [ | ||
Phenylindane-PBI | 250 | 3.4 | 480.6 | 6.522 | 26.32 | 纯气体 | [ | ||
PFCB-PBI | 250 | 3.4 | 323.1 | 6.604 | 23.45 | 纯气体 | [ | ||
m-PBI | 250 | 3.4 | 76.81 | 23.03 | 98.32 | 纯气体 | [ | ||
PBDI | 150 | 1 | 72.3 | 23 | 混合气 | [ | |||
TBB-PBI | 150 | 14 | 9.6 | 24 | 混合气 | [ | |||
PBI-(H3PO4)0.16 | 150 | 14 | 12 | 34 | 混合气 | [ | |||
PBI w/40%(mass) PMF(250℃) | 250 | 2 | 56.8 | 12.9 | 82.32 | 混合气 | [ | ||
PBI-HFA | 24 | 7.74 | 121.3 | 2.4 | 纯气体 | [ | |||
[DMABPBI][I] | 35 | 20 | 1.58 | 12.2 | 纯气体 | [ | |||
[DMABPBI][BF4] | 35 | 20 | 2.53 | 6 | 纯气体 | [ | |||
PBI-HFA | 400 | 5~8 | 24.2 | 26.19 | 纯气体 | [ | |||
m-PBI | 250 | 3.4 | 88 | 47.6 | 233.6 | 混合气 | [ | ||
Celazole®+1-IM | 35 | 10 | 3.4 | 30.91 | 75.56 | 纯气体 | [ | ||
20/80 PI/PBI+1-IM | 35 | 10 | 3.6 | 41.86 | 87.80 | 纯气体 | [ | ||
Matrimid/PBI(1∶3) | 35 | 3.5① | 5.47 | 9.43 | 260.48 | 563.92 | 纯气体 | [ | |
fMatrimid/PBI(1∶3)-p-xylene diamine 10 days | 35 | 3.5① | 3.6 | 26.09 | 272.73 | 1161.29 | 纯气体 | [ | |
HFM-2 | 250 | 1.36 | 77.55 | 25.7 | 纯气体 | [ | |||
T-C-BILP | 200 | 1 | 6.35 | 56.3 | 混合气 | [ | |||
T-C-BILP | 250 | 1 | 21.95 | 28.5 | 混合气 | [ | |||
BILP-5 | TR | 1 | 362 | 16 | 14.1② | 混合气 | [ | ||
BILP-101x | 150 | 2 | 9.68 | 39.5 | 混合气 | [ |
膜名称 | 温度/℃ | 压力/atm | H2渗透系数/Barrer | 选择性 | 气体组成 | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
H2/CO2 | H2/N2 | H2/CH4 | H2/O2 | ||||||
BTA-CANAL-2 | 35 | 1 | 1685 | 15 | 14 | 4.23 | 纯气体 | [ | |
PMDA-CANAL-2 | 35 | 1 | 1113 | 14 | 12 | 4.05 | 纯气体 | [ | |
CBDA-CANAL-2 | 35 | 1 | 747 | 13 | 12 | 4.32 | 纯气体 | [ | |
BTA-CANAL-4 | 35 | 1 | 656 | 25 | 22 | 5.70 | 纯气体 | [ | |
BTA-CANAL-3 | 35 | 1 | 266 | 1.16 | 28 | 25 | 6.65 | 纯气体 | [ |
6FDA-Durene | 35 | 1 | 932 | 10.1 | 10.3 | 3.44 | 纯气体 | [ | |
6FDA-DMNDA | 35 | 1 | 1055 | 11.0 | 10.7 | 3.58 | 纯气体 | [ | |
SBIDA-DMNDA | 35 | 1 | 1372 | 13.7 | 9.7 | 3.89 | 纯气体 | [ | |
BTA-6FDA-DMNDA | 35 | 1 | 1073 | 16.0 | 15.2 | 4.63 | 纯气体 | [ | |
CpODA-6FDA-DMNDA | 35 | 1 | 727 | 16.0 | 14.4 | 4.66 | 纯气体 | [ | |
PIM-1 | 35 | 2 | 3250 | 13.0 | 10.3 | 纯气体 | [ | ||
O3-PIM-300 | 35 | 2 | 683 | 4.85 | 142 | 182 | 纯气体 | [ | |
PIM-1-300 | 30 | 0.2① | 1078 | 18.27 | 7.54 | 2.64 | 纯气体 | [ | |
PIM-B | 30 | 1.08 | 110.41 | 1.57 | 38 | 57 | 7.61 | 纯气体 | [ |
PEI/PIM-B(80/20) | 35 | 5 | 14.11 | 8.66 | 159 | 271 | 14.55 | 纯气体 | [ |
PIM-UV-4hr | 35 | 3.5 | 452 | 7.3 | 166 | 173.9 | 27.39 | 纯气体 | [ |
PIM-PI-1 | 30 | 1 | 530 | 11.3 | 6.9 | 3.53 | 纯气体 | [ | |
PIM-PI-2 | 30 | 1 | 220 | 1.05 | 24.4 | 24.4 | 5.64 | 纯气体 | [ |
PIM-1/Matrimid® | 35 | 3.5 | 395 | 9.6 | 91.9 | 116.2 | 12.34 | 纯气体 | [ |
TPIM-1 | 1105 | 156 | 152 | 18.11 | 纯气体 | [ | |||
KAUST-PI-1 | 3431 | 39 | 41 | 6.33 | 纯气体 | [ | |||
PIM-TRIP-TB | 4740 | 25 | 22 | 4.42 | 纯气体 | [ | |||
PIM-EA-TB | 4442 | 24 | 20 | 4.76 | 纯气体 | [ | |||
PIM-1(P4.5) | 25② | 1028 | 6.5 | 109.4 | 127.1 | 纯气体 | [ | ||
PIM-1(M4.5) | 25② | 1535 | 4.1 | 86.2 | 93.5 | 纯气体 | [ | ||
PIM-F-60 | 22③ | 457④ | 16.9 | 515 | 1115 | 纯气体 | [ | ||
PIM-1 | -30 | 1557 | 1.13 | 91.59 | 9.79 | 74.14 | 纯气体 | [ | |
PIM-t-BOC | 35 | 1 | 130 | 1.3 | 36 | 26 | 6.8 | 纯气体 | [ |
SPIM-1-4 | 35 | 2 | 2957 | 1.4 | 47 | 50.1 | 7.7 | 纯气体 | [ |
PIM-EA(Me2)-TB 75% | 26⑤ | 86.67 | 86.67 | 20 | 纯气体 | [ |
Table 6 H2 separation properties of typical PIM membranes
膜名称 | 温度/℃ | 压力/atm | H2渗透系数/Barrer | 选择性 | 气体组成 | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
H2/CO2 | H2/N2 | H2/CH4 | H2/O2 | ||||||
BTA-CANAL-2 | 35 | 1 | 1685 | 15 | 14 | 4.23 | 纯气体 | [ | |
PMDA-CANAL-2 | 35 | 1 | 1113 | 14 | 12 | 4.05 | 纯气体 | [ | |
CBDA-CANAL-2 | 35 | 1 | 747 | 13 | 12 | 4.32 | 纯气体 | [ | |
BTA-CANAL-4 | 35 | 1 | 656 | 25 | 22 | 5.70 | 纯气体 | [ | |
BTA-CANAL-3 | 35 | 1 | 266 | 1.16 | 28 | 25 | 6.65 | 纯气体 | [ |
6FDA-Durene | 35 | 1 | 932 | 10.1 | 10.3 | 3.44 | 纯气体 | [ | |
6FDA-DMNDA | 35 | 1 | 1055 | 11.0 | 10.7 | 3.58 | 纯气体 | [ | |
SBIDA-DMNDA | 35 | 1 | 1372 | 13.7 | 9.7 | 3.89 | 纯气体 | [ | |
BTA-6FDA-DMNDA | 35 | 1 | 1073 | 16.0 | 15.2 | 4.63 | 纯气体 | [ | |
CpODA-6FDA-DMNDA | 35 | 1 | 727 | 16.0 | 14.4 | 4.66 | 纯气体 | [ | |
PIM-1 | 35 | 2 | 3250 | 13.0 | 10.3 | 纯气体 | [ | ||
O3-PIM-300 | 35 | 2 | 683 | 4.85 | 142 | 182 | 纯气体 | [ | |
PIM-1-300 | 30 | 0.2① | 1078 | 18.27 | 7.54 | 2.64 | 纯气体 | [ | |
PIM-B | 30 | 1.08 | 110.41 | 1.57 | 38 | 57 | 7.61 | 纯气体 | [ |
PEI/PIM-B(80/20) | 35 | 5 | 14.11 | 8.66 | 159 | 271 | 14.55 | 纯气体 | [ |
PIM-UV-4hr | 35 | 3.5 | 452 | 7.3 | 166 | 173.9 | 27.39 | 纯气体 | [ |
PIM-PI-1 | 30 | 1 | 530 | 11.3 | 6.9 | 3.53 | 纯气体 | [ | |
PIM-PI-2 | 30 | 1 | 220 | 1.05 | 24.4 | 24.4 | 5.64 | 纯气体 | [ |
PIM-1/Matrimid® | 35 | 3.5 | 395 | 9.6 | 91.9 | 116.2 | 12.34 | 纯气体 | [ |
TPIM-1 | 1105 | 156 | 152 | 18.11 | 纯气体 | [ | |||
KAUST-PI-1 | 3431 | 39 | 41 | 6.33 | 纯气体 | [ | |||
PIM-TRIP-TB | 4740 | 25 | 22 | 4.42 | 纯气体 | [ | |||
PIM-EA-TB | 4442 | 24 | 20 | 4.76 | 纯气体 | [ | |||
PIM-1(P4.5) | 25② | 1028 | 6.5 | 109.4 | 127.1 | 纯气体 | [ | ||
PIM-1(M4.5) | 25② | 1535 | 4.1 | 86.2 | 93.5 | 纯气体 | [ | ||
PIM-F-60 | 22③ | 457④ | 16.9 | 515 | 1115 | 纯气体 | [ | ||
PIM-1 | -30 | 1557 | 1.13 | 91.59 | 9.79 | 74.14 | 纯气体 | [ | |
PIM-t-BOC | 35 | 1 | 130 | 1.3 | 36 | 26 | 6.8 | 纯气体 | [ |
SPIM-1-4 | 35 | 2 | 2957 | 1.4 | 47 | 50.1 | 7.7 | 纯气体 | [ |
PIM-EA(Me2)-TB 75% | 26⑤ | 86.67 | 86.67 | 20 | 纯气体 | [ |
膜名称 | 温度/℃ | 压力/atm | H2渗透系数/Barrer | 选择性 | 气体组成 | 文献 | |
---|---|---|---|---|---|---|---|
H2/CO2 | H2/CH4 | ||||||
2D N-COF | 25 | 4319 | 13.8 | 5.8① | 混合气 | [ | |
3D COF-300 | 25 | 5160 | 11 | 5② | 混合气 | [ | |
TpTGCI@TpPa-SO3H | 150 | 0.2③ | 335.265 | 26 | 纯气体 | [ | |
TpEBr@TpPa-SO3Na | 150 | 0.2③ | 107.77 | 26.2 | 74.2 | 纯气体 | [ |
COF-LZU1 | 25 | 1 | 1912.2 | 6.4 | 10.3 | 纯气体 | [ |
ACOF-1 | 25 | 1 | 1195.7 | 15.6 | 25.4 | 纯气体 | [ |
COF-LUZ1-ACOF-1 | 25 | 1 | 732.0 | 26.7 | 105.0 | 纯气体 | [ |
Vertically aligned COF-LZU1 | 25 | 1 | 7309.6 | 31.6 | 29.5 | 混合气 | [ |
TpPaMe | 25 | 1 | 169.391 | 12.7 | 混合气 | [ | |
LA-α-CD-in-TpPa-1 | 25 | 1 | 4534.95 | 34.9 | 混合气 | [ |
Table 7 H2 separation properties of typical COF membranes
膜名称 | 温度/℃ | 压力/atm | H2渗透系数/Barrer | 选择性 | 气体组成 | 文献 | |
---|---|---|---|---|---|---|---|
H2/CO2 | H2/CH4 | ||||||
2D N-COF | 25 | 4319 | 13.8 | 5.8① | 混合气 | [ | |
3D COF-300 | 25 | 5160 | 11 | 5② | 混合气 | [ | |
TpTGCI@TpPa-SO3H | 150 | 0.2③ | 335.265 | 26 | 纯气体 | [ | |
TpEBr@TpPa-SO3Na | 150 | 0.2③ | 107.77 | 26.2 | 74.2 | 纯气体 | [ |
COF-LZU1 | 25 | 1 | 1912.2 | 6.4 | 10.3 | 纯气体 | [ |
ACOF-1 | 25 | 1 | 1195.7 | 15.6 | 25.4 | 纯气体 | [ |
COF-LUZ1-ACOF-1 | 25 | 1 | 732.0 | 26.7 | 105.0 | 纯气体 | [ |
Vertically aligned COF-LZU1 | 25 | 1 | 7309.6 | 31.6 | 29.5 | 混合气 | [ |
TpPaMe | 25 | 1 | 169.391 | 12.7 | 混合气 | [ | |
LA-α-CD-in-TpPa-1 | 25 | 1 | 4534.95 | 34.9 | 混合气 | [ |
膜名称 | 温度/℃ | 压力/atm | H2渗透系数/ Barrer | 选择性 | 气体组成 | 文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
H2/CO2 | H2/N2 | H2/CH4 | H2/O2 | H2/CO | H2/碳氢化合物 | ||||||
ppPAF | TR | 1 | 约141.84 | 78.8 | 93.3 | 混合气 | [ | ||||
PTFS | 35 | 1 | 84.24 | 2.35 | 35.00 | 52.39 | 95① | 纯气体 | [ | ||
CBZ | 35 | 2 | 61.2 | 2.15 | 51 | 55.6 | 8.38 | 纯气体 | [ | ||
FLN | 35 | 2 | 150.3 | 2.40 | 54.1 | 88.4 | 12.63 | 纯气体 | [ | ||
DFL | 35 | 2 | 151.5 | 1.94 | 28.6 | 43.3 | 4.28 | 纯气体 | [ | ||
TR-PBOI | 35 | 5 | 116 | 2.4 | 44.5 | 78.9 | 30.9 | 纯气体 | [ | ||
PEEK-WC(120℃) | 80 | 1 | 约20 | 约20 | 约24 | 44 | 纯气体 | [ | |||
PLA | 25 | 1 | 25 | 25 | 5 | 10 | 纯气体 | [ | |||
PEMA | 25 | 6.8 | 4.8 | 24 | 480 | 16 | 纯气体 | [ |
Table 8 H2 separation performance of other polymer membranes
膜名称 | 温度/℃ | 压力/atm | H2渗透系数/ Barrer | 选择性 | 气体组成 | 文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
H2/CO2 | H2/N2 | H2/CH4 | H2/O2 | H2/CO | H2/碳氢化合物 | ||||||
ppPAF | TR | 1 | 约141.84 | 78.8 | 93.3 | 混合气 | [ | ||||
PTFS | 35 | 1 | 84.24 | 2.35 | 35.00 | 52.39 | 95① | 纯气体 | [ | ||
CBZ | 35 | 2 | 61.2 | 2.15 | 51 | 55.6 | 8.38 | 纯气体 | [ | ||
FLN | 35 | 2 | 150.3 | 2.40 | 54.1 | 88.4 | 12.63 | 纯气体 | [ | ||
DFL | 35 | 2 | 151.5 | 1.94 | 28.6 | 43.3 | 4.28 | 纯气体 | [ | ||
TR-PBOI | 35 | 5 | 116 | 2.4 | 44.5 | 78.9 | 30.9 | 纯气体 | [ | ||
PEEK-WC(120℃) | 80 | 1 | 约20 | 约20 | 约24 | 44 | 纯气体 | [ | |||
PLA | 25 | 1 | 25 | 25 | 5 | 10 | 纯气体 | [ | |||
PEMA | 25 | 6.8 | 4.8 | 24 | 480 | 16 | 纯气体 | [ |
1 | Heid B, Linder A, Orthofer A, et al. Hydrogen: the next wave for electric vehicles?[R]. McKinsey Center for Future Mobility, 2018. |
2 | 李星国. 氢与氢能[M]. 2版. 北京: 科学出版社, 2022. |
Li X G. Hydrogen and Hydrogen Energy[M]. 2nd ed. Beijing: Science Press, 2022. | |
3 | Bitter J H, Tashvigh A A. Recent advances in polybenzimidazole membranes for hydrogen purification[J]. Industrial & Engineering Chemistry Research, 2022, 61(18): 6125-6134. |
4 | 肖楠林, 叶一鸣, 胡小飞, 等. 常用氢气纯化方法的比较[J]. 产业与科技论坛, 2018, 17(17): 66-69. |
Xiao N L, Ye Y M, Hu X F, et al. Comparison of common hydrogen purification methods[J]. Industrial & Science Tribune, 2018, 17(17): 66-69. | |
5 | 魏玺群, 陈健. 变压吸附气体分离技术的应用和发展[J]. 低温与特气, 2002, 20(3): 1-4, 11. |
Wei X Q, Chen J. The application & development of PSA gas separating technology[J]. Low Temperature and Specialty Gases, 2002, 20(3): 1-4, 11. | |
6 | Sircar S, Golden T C. Purification of hydrogen by pressure swing adsorption[J]. Separation Science and Technology, 2000, 35(5): 667-687. |
7 | 丁黎明, 郦和生, 魏昕, 等. 氢气分离膜材料的研究现状[J]. 膜科学与技术, 2022, 42(2):183-189. |
Ding L M, Li H S, Wei X, et al. Recent developments in polymer membranes for hydrogen separation[J]. Membrane Science and Technology, 2022, 42(2): 183-189. | |
8 | Baker R W. Future directions of membrane gas separation technology[J]. Industrial & Engineering Chemistry Research, 2002, 41(6): 1393-1411. |
9 | Nunes S P, Peinemann K V. Membrane Technology[M]∥Chemical Industry. Second, Revised and Extended Edition. Wiley-VCH Verlag GmbH & Co. KGaA, 2006. |
10 | Henis J M S, Tripodi M K. Multicomponent membranes for gas separations: US4230463[P]. 1980-10-28. |
11 | Tsuru T, Yamaguchi K, Yoshioka T, et al. Methane steam reforming by microporous catalytic membrane reactors[J]. AIChE Journal, 2004, 50(11): 2794-2805. |
12 | Hosseini S S, Teoh M M, Chung T S. Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks[J]. Polymer, 2008, 49(6): 1594-1603. |
13 | Puleo A C, Paul D R, Kelley S S. The effect of degree of acetylation on gas sorption and transport behavior in cellulose acetate[J]. Journal of Membrane Science, 1989, 47(3): 301-332. |
14 | Ekiner O M, Vassilatos G. Polyaramide hollow fibers for hydrogen/methane separation-spinning and properties[J]. Journal of Membrane Science, 1990, 53(3): 259-273. |
15 | Mizrahi Rodriguez K, Wu W N, Alebrahim T, et al. Multi-lab study on the pure-gas permeation of commercial polysulfone (PSf) membranes: measurement standards and best practices[J]. Journal of Membrane Science, 2022, 659: 120746. |
16 | Li Y, Chung T S. Highly selective sulfonated polyethersulfone (SPES)-based membranes with transition metal counterions for hydrogen recovery and natural gas separation[J]. Journal of Membrane Science, 2008, 308(1): 128-135. |
17 | Abetz V, Brinkmann T, Dijkstra M, et al. Developments in membrane research: from material via process design to industrial application[J]. Advanced Engineering Materials, 2006, 8(5): 328-358. |
18 | 邓麦村, 金万勤. 膜技术手册[M]. 2版. 北京: 化学工业出版社, 2020. |
Deng M C, Jin W Q. Handbook of Membrane Technology[M]. 2nd ed. Beijing: Chemical Industry Press, 2020. | |
19 | Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art[J]. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638-4663. |
20 | Stern S A, Mi Y, Yamamoto H, et al. Structure/permeability relationships of polyimide membranes. Applications to the separation of gas mixtures[J]. Journal of Polymer Science Part B: Polymer Physics, 1989, 27(9): 1887-1909. |
21 | Shan M X, Liu X L, Wang X R, et al. Facile manufacture of porous organic framework membranes for precombustion CO2 capture[J]. Science Advances, 2018, 4(9): eaau1698. |
22 | Gao A T, Yan X R, Cong S Z, et al. Designed channels in thin benzimidazole-linked polymer membranes for hot H2 purification[J]. Journal of Membrane Science, 2023, 668: 121293. |
23 | Weller S, Steiner W A. Separation of gases by fractional permeation through membranes[J]. Journal of Applied Physics, 1950, 21(4): 279-283. |
24 | Brubaker D W, Kammermeyer K. Separation of gases by plastic membranes—permeation rates and extent of separation[J]. Industrial & Engineering Chemistry, 1954, 46(4): 733-739. |
25 | 王卓, 刘霞, 李雪娇, 等. 有机膜材料用于CO2分离过程的研究进展[J]. 山东化工, 2021, 50(18): 74-75, 79. |
Wang Z, Liu X, Li X J, et al. Research progress of organic membrane materials for CO2 separation[J]. Shandong Chemical Industry, 2021, 50(18): 74-75, 79. | |
26 | 孙黎. H2分离用有机膜专利技术概述[J]. 中国化工贸易, 2021(21): 76-77. |
Sun L. Overview of patented organic mebrane technology for H2 separation[J]. China Chemical Trade, 2021(21): 76-77. | |
27 | Ansaloni L, Louradour E, Radmanesh F, et al. Upscaling polyPOSS-imide membranes for high temperature H2 upgrading[J]. Journal of Membrane Science, 2021, 620: 118875. |
28 | Li G Z, Si Z H, Yang S, et al. Fast layer-by-layer assembly of PDMS for boosting the gas separation of P84 membranes[J]. Chemical Engineering Science, 2022, 253: 117588. |
29 | Yousef S, Šereika J, Tonkonogovas A, et al. CO2/CH4, CO2/N2 and CO2/H2 selectivity performance of PES membranes under high pressure and temperature for biogas upgrading systems[J]. Environmental Technology & Innovation, 2021, 21: 101339. |
30 | Choi W, Ingole P G, Park J S, et al. H2/CO mixture gas separation using composite hollow fiber membranes prepared by interfacial polymerization method[J]. Chemical Engineering Research and Design, 2015, 102: 297-306. |
31 | Cong S Z, Yuan Y, Wang J X, et al. Network polyimide membranes prepared by interfacial polymerization for hot H2 purification[J]. AIChE Journal, 2022, 69(4): e17983. |
32 | Abdulhamid M A, Lai H W H, Wang Y G, et al. Microporous polyimides from ladder diamines synthesized by facile catalytic arene-norbornene annulation as high-performance membranes for gas separation[J]. Chemistry of Materials, 2019, 31(5): 1767-1774. |
33 | Omidvar M, Stafford C M, Lin H Q. Thermally stable cross-linked P84 with superior membrane H2/CO2 separation properties at 100℃[J]. Journal of Membrane Science, 2019, 575: 118-125. |
34 | Abdulhamid M A, Ma X H, Ghanem B S, et al. Synthesis and characterization of organo-soluble polyimides derived from alicyclic dianhydrides and a dihydroxyl-functionalized spirobisindane diamine[J]. ACS Applied Polymer Materials, 2019, 1(1): 63-69. |
35 | Zhang Y, Lee W H, Seong J G, et al. Alicyclic segments upgrade hydrogen separation performance of intrinsically microporous polyimide membranes[J]. Journal of Membrane Science, 2020, 611: 118363. |
36 | Lu Y, Hu X F, Pang Y Y, et al. Intrinsically microporous polyimides derived from norbornane-2-spiro-α-cyclopentanone-α′-spiro-2″-norbornane-5, 5″, 6, 6″-tetracarboxylic dianhydride[J]. Polymer, 2021, 228: 123955. |
37 | Guo L L, Shi Y P, Wu S S, et al. Poly(hydrazide-imide) membranes with enhanced interchain interaction for highly selective H2/CO2 separation[J]. Macromolecules, 2023, 56(9): 3430-3439. |
38 | Ali Z, Wang Y G, Ogieglo W, et al. Gas separation and water desalination performance of defect-free interfacially polymerized para-linked polyamide thin-film composite membranes[J]. Journal of Membrane Science, 2021, 618: 118572. |
39 | Shao L, Lau C H, Chung T S. A novel strategy for surface modification of polyimide membranes by vapor-phase ethylenediamine (EDA) for hydrogen purification[J]. International Journal of Hydrogen Energy, 2009, 34(20): 8716-8722. |
40 | Zhang C L, Yan J, Tian Z K, et al. Molecular design of Tröger’s base-based polymers containing spirobichroman structure for gas separation[J]. Industrial & Engineering Chemistry Research, 2017, 56(44): 12783-12788. |
41 | Tanaka K, Okano M, Toshino H, et al. Effect of methyl substituents on permeability and permselectivity of gases in polyimides prepared from methyl-substituted phenylenediamines[J]. Journal of Polymer Science Part B: Polymer Physics, 1992, 30(8): 907-914. |
42 | Wu A X, Drayton J A, Rodriguez K M, et al. Influence of aliphatic and aromatic fluorine groups on gas permeability and morphology of fluorinated polyimide films[J]. Macromolecules, 2020, 53(13): 5085-5095. |
43 | Yamamoto H, Mi Y, Stern S A, et al. Structure/permeability relationships of polyimide membranes(Ⅱ)[J]. Journal of Polymer Science Part B: Polymer Physics, 1990, 28(12): 2291-2304. |
44 | Xu J W, Chng M L, Chung T S, et al. Permeability of polyimides derived from non-coplanar diamines and 4,4′-(hexafluoroisopropylidene) diphthalic anhydride[J]. Polymer, 2003, 44(16): 4715-4721. |
45 | Zhang B B, Qiao J, Dong C X, et al. Dibenzo-21-crown-7-ether contained 6FDA-based polyimide membrane with improved gas selectivity[J]. Separation and Purification Technology, 2021, 264: 118454. |
46 | 袁清, 李庚鸿, 李苏爽, 等. 基于三蝶烯结构聚酰亚胺膜的制备及其H2/轻烃分离性能[J]. 石油炼制与化工, 2023, 54(3): 101-106. |
Yuan Q, Li G H, Li S S, et al. Preparation of polyamide membrane based on triphene structure and its hydrogen/light hydrocarbon separation performance[J]. Petroleum Processing and Petrochemicals, 2023, 54(3): 101-106. | |
47 | Sarrigani G V, Ding J, Ghadi A E, et al. Interfacially-confined polyetherimide tubular membranes for H2, CO2 and N2 separations[J]. Journal of Membrane Science, 2022, 655: 120596. |
48 | Pientka Z, Peter J, Válek R. Membrane unit for integrated gas separation-membrane bioreactor (GS-MBR) system[J]. Hungarian Journal of Industry and Chemistry, 2022, 50(1): 15-22. |
49 | Lee T H, Lee B K, Park J S, et al. Surface modification of Matrimid® 5218 polyimide membrane with fluorine-containing diamines for efficient gas separation[J]. Membranes, 2022, 12(3): 256. |
50 | Seo C H, Lim S W, Min H J, et al. Preparation of semi-alicyclic homo- and blended polyimide membranes using alicyclic dianhydrides with kink structures and their gas separation properties[J]. Journal of Industrial and Engineering Chemistry, 2022, 114: 347-360. |
51 | Patel H D, Acharya N K. Synthesis and characteristics of HAB-6FDA thermally rearranged polyimide nanocomposite membranes[J]. Polymer Engineering & Science, 2021, 61(11): 2782-2791. |
52 | Mishra N K, Patil N, Long C, et al. Enhancing H2-permselectivity of high-flux hollow fiber membrane via in-situ layer-by-layer surface treatment[J]. Journal of Membrane Science, 2020, 615: 118312. |
53 | García M G, Marchese J, Ochoa N A. Improved gas selectivity of polyetherimide membrane by the incorporation of PIM polyimide phase[J]. Journal of Applied Polymer Science, 2017, 134(14): 44682. |
54 | Luo S J, Liu Q A, Zhang B H, et al. Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation[J]. Journal of Membrane Science, 2015, 480: 20-30. |
55 | Wiegand J R, Smith Z P, Liu Q, et al. Synthesis and characterization of triptycene-based polyimides with tunable high fractional free volume for gas separation membranes[J]. Journal of Materials Chemistry A, 2014, 2(33): 13309-13320. |
56 | Kang S Y, Zhang Z G, Wu L, et al. Synthesis and gas separation properties of polyimide membranes derived from oxygencyclic pseudo-Tröger’s base[J]. Journal of Membrane Science, 2021, 637: 119604. |
57 | Cong S Z, Wang J X, Wang Z, et al. Polybenzimidazole (PBI) and benzimidazole-linked polymer (BILP) membranes[J]. Green Chemical Engineering, 2021, 2(1): 44-56. |
58 | Zhu L X, Swihart M T, Lin H Q. Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H2/CO2 separation[J]. Journal of Materials Chemistry A, 2017, 5(37): 19914-19923. |
59 | Jiao Y, Liu M D, Wu Q, et al. Finely tuning the microporosity in phosphoric acid doped triptycene containing polybenzimidazole membranes for highly permselective helium and hydrogen recovery[J]. Journal of Membrane Science, 2023, 672: 121474. |
60 | Moon J D, Bridge A T, D’Ambra C, et al. Gas separation properties of polybenzimidazole/thermally-rearranged polymer blends[J]. Journal of Membrane Science, 2019, 582: 182-193. |
61 | Hosseini S S, Peng N, Chung T S. Gas separation membranes developed through integration of polymer blending and dual-layer hollow fiber spinning process for hydrogen and natural gas enrichments[J]. Journal of Membrane Science, 2010, 349(1/2): 156-166. |
62 | Perez E V, Ferraris J P, Balkus K J, et al. Effect of the annealing temperature of polybenzimidazole membranes in high pressure and high temperature H2/CO2 gas separations[J]. Journal of Membrane Science, 2023, 677: 121619. |
63 | Li X, Singh R P, Dudeck K W, et al. Influence of polybenzimidazole main chain structure on H2/CO2 separation at elevated temperatures[J]. Journal of Membrane Science, 2014, 461: 59-68. |
64 | Zhu L X, Swihart M T, Lin H Q. Unprecedented size-sieving ability in polybenzimidazole doped with polyprotic acids for membrane H2/CO2 separation[J]. Energy & Environmental Science, 2018, 11(1): 94-100. |
65 | Moon J D, Borjigin H, Liu R, et al. Impact of humidity on gas transport in polybenzimidazole membranes[J]. Journal of Membrane Science, 2021, 639: 119758. |
66 | AlHumaidan F S, Absi Halabi M, Rana M S, et al. Blue hydrogen: current status and future technologies[J]. Energy Conversion and Management, 2023, 283: 116840. |
67 | Bhadra S, Kim N H, Choi J S, et al. Hyperbranched poly(benzimidazole-co-benzene) with honeycomb structure as a membrane for high-temperature proton-exchange membrane fuel cells[J]. Journal of Power Sources, 2010, 195(9): 2470-2477. |
68 | Rabbani M G, El-Kaderi H M. Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake[J]. Chemistry of Materials, 2012, 24(8): 1511-1517. |
69 | Duan S F, Li D Y, Yang X J, et al. Experimental and molecular simulation study of a novel benzimidazole-linked polymer membrane for efficient H2/CO2 separation[J]. Journal of Membrane Science, 2023, 671: 121396. |
70 | Kumbharkar S C, Karadkar P B, Kharul U K. Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture[J]. Journal of Membrane Science, 2006, 286(1/2): 161-169. |
71 | Stevens K A, Moon J D, Borjigin H, et al. Influence of temperature on gas transport properties of tetraaminodiphenylsulfone (TADPS) based polybenzimidazoles[J]. Journal of Membrane Science, 2020, 593: 117427. |
72 | Shan M X, Liu X L, Wang X R, et al. Novel high performance poly(p-phenylene benzobisimidazole) (PBDI) membranes fabricated by interfacial polymerization for H2 separation[J]. Journal of Materials Chemistry A, 2019, 7(15): 8929-8937. |
73 | Naderi A, Asadi Tashvigh A, Chung T S. H2/CO2 separation enhancement via chemical modification of polybenzimidazole nanostructure[J]. Journal of Membrane Science, 2019, 572: 343-349. |
74 | Klaehn J R, Orme C J, Peterson E S. Blended polybenzimidazole and melamine-co-formaldehyde thermosets[J]. Journal of Membrane Science, 2016, 515: 1-6. |
75 | Choi S H, Kim D H, Kim D Y, et al. A highly selective polybenzimidazole-4,4′(hexafluoroisopropylidene)bis(benzoic acid) membrane for high-temperature hydrogen separation[J]. Journal of Applied Polymer Science, 2015, 132(32): 42371. |
76 | Bhavsar R S, Kumbharkar S C, Kharul U K. Investigation of gas permeation properties of film forming polymeric ionic liquids (PILs) based on polybenzimidazoles[J]. Journal of Membrane Science, 2014, 470: 494-503. |
77 | Kumbharkar S C, Liu Y, Li K. High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation[J]. Journal of Membrane Science, 2011, 375(1/2): 231-240. |
78 | Berchtold K A, Singh R P, Young J S, et al. Polybenzimidazole composite membranes for high temperature synthesis gas separations[J]. Journal of Membrane Science, 2012, 415/416: 265-270. |
79 | Singh R P, Dahe G J, Dudeck K W, et al. Macrovoid-free high performance polybenzimidazole hollow fiber membranes for elevated temperature H2/CO2 separations[J]. International Journal of Hydrogen Energy, 2020, 45(51): 27331-27345. |
80 | Lee W H, Seong J G, Hu X F, et al. Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: pushing performance limits and revisiting trade-off lines[J]. Journal of Polymer Science, 2020, 58(18): 2450-2466. |
81 | Yuan P, Zhang M R, Pang Y Y, et al. Intrinsically microporous polyimides from norbornyl bis-benzocyclobutene-containing diamines and rigid dianhydrides for membrane-based gas separation[J]. ACS Applied Polymer Materials, 2023, 5(2): 1420-1429. |
82 | Li F Y, Xiao Y C, Ong Y K, et al. UV-rearranged PIM-1 polymeric membranes for advanced hydrogen purification and production[J]. Advanced Energy Materials, 2012, 2(12): 1456-1466. |
83 | Lee T H, Balçık M, Lee B K, et al. Hyperaging-induced H2-selective thin-film composite membranes with enhanced submicroporosity toward green hydrogen supply[J]. Journal of Membrane Science, 2023, 672: 121438. |
84 | Guo H L, Hu X F, Wang Z, et al. Intrinsically microporous polyimides from p-phenylenediamine with fused cyclopentyl substituents for membrane-based gas separation[J]. Separation and Purification Technology, 2023, 316: 123690. |
85 | Ji W H, Geng H B, Chen Z S, et al. Facile tailoring molecular sieving effect of PIM-1 by in-situ O3 treatment for high performance hydrogen separation[J]. Journal of Membrane Science, 2022, 662: 120971. |
86 | Ghanem B S, McKeown N B, Budd P M, et al. Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides[J]. Macromolecules, 2009, 42(20): 7881-7888. |
87 | Chun B W, Ishizu C, Itatani H, et al. Characterization and gas permeability of a three-component polyimide series[J]. Journal of Polymer Science Part B: Polymer Physics, 1994, 32(6): 1009-1016. |
88 | Yong W F, Li F Y, Chung T S, et al. Highly permeable chemically modified PIM-1/matrimid membranes for green hydrogen purification[J]. Journal of Materials Chemistry A, 2013, 1: 13914-13925. |
89 | Swaidan R, Ghanem B, Pinnau I. Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations[J]. ACS Macro Letters, 2015, 4(9): 947-951. |
90 | Hou R J, Smith S J D, Konstas K, et al. Synergistically improved PIM-1 membrane gas separation performance by PAF-1 incorporation and UV irradiation[J]. Journal of Materials Chemistry A, 2022, 10(18): 10107-10119. |
91 | Belov N A, Alentiev A Y, Nikiforov R Y, et al. Gas separation properties of PIM-1 films treated by elemental fluorine in liquid perfluorodecalin[J]. Polymer, 2023, 280: 126033. |
92 | Ji W, Li K, Min Y G, et al. Remarkably enhanced gas separation properties of PIM-1 at sub-ambient temperatures[J]. Journal of Membrane Science, 2021, 623: 119091. |
93 | Mizrahi Rodriguez K, Lin S, Wu A X, et al. Leveraging free volume manipulation to improve the membrane separation performance of amine-functionalized PIM-1[J]. Angewandte Chemie, 2021, 133(12): 6667-6673. |
94 | Dong H, Zhu Z Y, Li K H, et al. Significantly improved gas separation properties of sulfonated PIM-1 by direct sulfonation using SO3 solution[J]. Journal of Membrane Science, 2021, 635: 119440. |
95 | Longo M, Monteleone M, Esposito E, et al. Thin film composite membranes based on the polymer of intrinsic microporosity PIM-EA(Me2)-TB blended with Matrimid®5218[J]. Membranes, 2022, 12(9): 881. |
96 | Partho A T, Tahir M, Tahir B. Recent advances in covalent organic framework (COF) nanotextures with band engineering for stimulating solar hydrogen production: a comprehensive review[J]. International Journal of Hydrogen Energy, 2022, 47(81): 34323-34375. |
97 | Ying Y P, Peh S B, Yang H, et al. Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation[J]. Advanced Materials, 2022, 34(25): 2270191. |
98 | Li B J, Wang Z T, Gao Z Z, et al. Self-standing covalent organic framework membranes for H2/CO2 separation[J]. Advanced Functional Materials, 2023, 33(16): 2300219. |
99 | Li X D, Wang Y D, Guo F, et al. Computer-aided design of high-connectivity covalent organic frameworks as CH4/H2 adsorption and separation media[J]. International Journal of Hydrogen Energy, 2023, 48(34): 12753-12766. |
100 | Ying Y P, Tong M M, Ning S C, et al. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation[J]. Journal of the American Chemical Society, 2020, 142(9): 4472-4480. |
101 | Fan H W, Mundstock A, Feldhoff A, et al. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation[J]. Journal of the American Chemical Society, 2018, 140(32): 10094-10098. |
102 | Fan H W, Peng M H, Strauss I, et al. High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation[J]. Journal of the American Chemical Society, 2020, 142(15): 6872-6877. |
103 | Zheng W, Hou J J, Liu C J, et al. Melamine-doped covalent organic framework membranes for enhanced hydrogen purification[J]. Chemistry-An Asian Journal, 2021, 16(22): 3624-3629. |
104 | Fan H W, Wang H R, Peng M H, et al. Pore-in-pore engineering in a covalent organic framework membrane for gas separation[J]. ACS Nano, 2023, 17(8): 7584-7594. |
105 | Ma Y, Liu L, Lei H T, et al. Facile synthesis of porphyrin-based PAF membrane for hydrogen purification[J]. Inorganic Chemistry Communications, 2022, 141: 109526. |
106 | Guan J A, Lu Y Q, Du L J, et al. An aromatic fluoropolymer for hydrogen separation from hydrocarbons[J]. Macromolecular Rapid Communications, 2022, 43(6): 2100796. |
107 | González-Díaz M O, Cetina-Mancilla E, Sulub-Sulub R, et al. Novel fluorinated aromatic polymers with ether-bond-free aryl backbones for pure and mixed gas separation[J]. Journal of Membrane Science, 2020, 606: 118114. |
108 | Brunetti A, Tocci E, Cersosimo M, et al. Mutual influence of mixed-gas permeation in thermally rearranged poly(benzoxazole-co-imide) polymer membranes[J]. Journal of Membrane Science, 2019, 580: 202-213. |
109 | Iulianelli A, Algieri C, Donato L, et al. New PEEK-WC and PLA membranes for H2 separation[J]. International Journal of Hydrogen Energy, 2017, 42(34): 22138-22148. |
110 | Gülmüs S A, Yilmaz L. Effect of temperature and membrane preparation parameters on gas permeation properties of polymethacrylates[J]. Journal of Polymer Science Part B: Polymer Physics, 2007, 45: 3025-3033. |
111 | Cadotte J E, Rozelle L T. In-situ formed condensation polymers for reverse osmosis membranes[R]. OSW PB-Report, 1972. |
112 | Cadotte J E. Interfacially synthesized reverse osmosis membrane: US4277344[P]. 1981-07-07. |
113 | Baker R W, Low B T. Gas separation membrane materials: a perspective[J]. Macromolecules, 2014, 47(20): 6999-7013. |
114 | 李敏, 阎雪茹, 刘新磊. 苯并咪唑连接聚合物吸附剂和膜研究进展[J]. 化工学报, 2023, 74(2): 599-616. |
Li M, Yan X R, Liu X L. Advances in benzimidazole-linked polymer adsorbents and membranes[J]. CIESC Journal, 2023, 74(2): 599-616. | |
115 | Rahman M M. Material design concepts and gas separation mechanism of CO2 selective polyether-based multiblock copolymers[J]. Macromolecular Rapid Communications, 2023, 44(14): 2300114. |
116 | 鲁云华, 郝继璨, 李琳, 等. 自具微孔聚合物PIM-1基热致刚性膜材料的制备及气体分离性能[J]. 材料导报, 2018, 32(16): 2876-2881. |
Lu Y H, Hao J C, Li L, et al. Preparation and gas separation properties of polymers of intrinsic microporosity PIM-1 based thermally induced rigid membranes[J]. Materials Review, 2018, 32(16): 2876-2881. | |
117 | 栾永超, 熊亚林, 何广利, 等. 氢气分离膜研究进展[J]. 中国工程科学, 2022, 24(3): 140-152. |
Luan Y C, Xiong Y L, He G L, et al. Research progress of hydrogen separation membrane[J]. Strategic Study of CAE, 2022, 24(3): 140-152. | |
118 | Abdul Nasir N, Ling J H, Junaidi M U M, et al. 1, 3-propane diamine/1, 4-butane diamine cross-linking modification of polyimide membrane for hydrogen selective separation: effect of diamine mixture ratio[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(3): e2411. |
119 | Kai T, Taniguchi I, Duan S H, et al. Molecular gate membrane: poly(amidoamine) dendrimer/polymer hybrid membrane modules for CO2 capture[J]. Energy Procedia, 2013, 37: 961-968. |
120 | Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
121 | Lasseuguette E, Ferrari M C. Polymer membranes for sustainable gas separation[M]//Sustainable Nanoscale Engineering. Amsterdam: Elsevier, 2020: 265-296. |
122 | 王园园, 郭忠森, 周仕鑫, 等. 某炼油厂氢气和轻烃综合回收工艺分析[J]. 炼油技术与工程, 2022, 52(9): 28-31, 57. |
Wang Y Y, Guo Z S, Zhou S X, et al. Comprehensive recovery of hydrogen and light hydrocarbon in a refinery[J]. Petroleum Refinery Engineering, 2022, 52(9): 28-31, 57. | |
123 | Jeon J W, Kim D G, Sohn E H, et al. Highly carboxylate-functionalized polymers of intrinsic microporosity for CO2-selective polymer membranes[J]. Macromolecules, 2017, 50(20): 8019-8027. |
124 | Taniguchi I, Duan S H, Kai T, et al. Effect of the phase-separated structure on CO2 separation performance of the poly(amidoamine) dendrimer immobilized in a poly(ethylene glycol) network[J]. Journal of Materials Chemistry A, 2013, 1(46): 14514-14523. |
125 | Taniguchi I, Kai T, Duan S H, et al. PAMAM dendrimer containing polymeric membrane for preferential CO2 separation over H2-interplay between CO2 separation properties and morphology[J]. Energy Procedia, 2013, 37: 1067-1075. |
126 | Gouveia A S L, Yáñez M, Alves V D, et al. CO2/H2 separation through poly(ionic liquid)-ionic liquid membranes: the effect of multicomponent gas mixtures, temperature and gas feed pressure[J]. Separation and Purification Technology, 2021, 259: 118113. |
[1] | Xueyi MA, Keqin LIU, Jijiang HU, Zhen YAO. CFD studies on the mixing and reaction in a solution polymerization reactor for POE production [J]. CIESC Journal, 2024, 75(1): 322-337. |
[2] | Yuting ZHENG, Guandong FANG, Mengbo ZHANG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on micro-chemical rectification and separation technology [J]. CIESC Journal, 2024, 75(1): 47-59. |
[3] | Xuejie WANG, Guoqing CUI, Wenhan WANG, Yang YANG, Congkai WANG, Guiyuan JIANG, Chunming XU. Study on highly efficient methylcyclohexane dehydrogenation over Pt/NPC catalysts by internal electric heating [J]. CIESC Journal, 2024, 75(1): 292-301. |
[4] | Youjia WANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on separation technology of diesel hydrocarbon components [J]. CIESC Journal, 2024, 75(1): 20-32. |
[5] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[6] | Qiang ZHANG, Xianfei WANG, Kai WANG, Guangsheng LUO, Zhongkai LU. Advances in metal-free catalysts in copolymerization of epoxides and cyclic anhydrides [J]. CIESC Journal, 2024, 75(1): 60-73. |
[7] | Kexin YAN, Hongtao JIANG, Weiqun GAO, Xiaohui GUO, Weizhen SUN, Ling ZHAO. Recent advances in the removal of trace boron and phosphorus impurities from electronic grade silicon raw materials [J]. CIESC Journal, 2024, 75(1): 83-94. |
[8] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[9] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[10] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[11] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[12] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[13] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[14] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[15] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||