CIESC Journal ›› 2023, Vol. 74 ›› Issue (11): 4515-4526.DOI: 10.11949/0438-1157.20230985
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Zhuang CHEN1(), Guangdi LI1,2, Hongxuan ZENG1, Hongxia ZHAO1()
Received:
2023-09-21
Revised:
2023-11-06
Online:
2024-01-22
Published:
2023-11-25
Contact:
Hongxia ZHAO
通讯作者:
赵红霞
作者简介:
陈壮(1999—),男,硕士,chenzhuang_cg@163.com
基金资助:
CLC Number:
Zhuang CHEN, Guangdi LI, Hongxuan ZENG, Hongxia ZHAO. Flow simulation and performance analysis of adjustable ejector for trans-critical CO2 two-phase flow[J]. CIESC Journal, 2023, 74(11): 4515-4526.
陈壮, 刘光弟, 曾宏轩, 赵红霞. 跨临界CO2两相流可调式喷射器的流动模拟和性能分析[J]. 化工学报, 2023, 74(11): 4515-4526.
Add to citation manager EndNote|Ris|BibTeX
几何参数 | 数值 |
---|---|
探针直径Dne/mm | 1.78 |
喷嘴入口直径Din/mm | 4.99 |
喷嘴喉部直径Dth/mm | 1.76 |
混合室直径Dmix/mm | 3.46 |
扩散室出口直径Dej,out/mm | 8.35 |
探针长度Lne/mm | 2.40 |
喷嘴收敛段长度Lcon/mm | 9.16 |
喷嘴扩散段长度Ldif/mm | 6.32 |
喷嘴出口位置NXP/mm | 6.00 |
混合室长度Lmix/mm | 15.00 |
扩散室长度Lej,dif/mm | 70.00 |
探针位置Lp/mm | 0~2.40 |
Table 1 Geometrical parameters of the adjustable ejector
几何参数 | 数值 |
---|---|
探针直径Dne/mm | 1.78 |
喷嘴入口直径Din/mm | 4.99 |
喷嘴喉部直径Dth/mm | 1.76 |
混合室直径Dmix/mm | 3.46 |
扩散室出口直径Dej,out/mm | 8.35 |
探针长度Lne/mm | 2.40 |
喷嘴收敛段长度Lcon/mm | 9.16 |
喷嘴扩散段长度Ldif/mm | 6.32 |
喷嘴出口位置NXP/mm | 6.00 |
混合室长度Lmix/mm | 15.00 |
扩散室长度Lej,dif/mm | 70.00 |
探针位置Lp/mm | 0~2.40 |
名称 | 设置 | |
---|---|---|
求解算法 | pressure-based coupled algorithm | |
空间离散方式 | 梯度 | least squares cell-based |
压力项 | PRESTO! | |
其他项 | second order upwind | |
喷射器入口边界 | pressure-inlet | |
喷射器出口边界 | pressure-outlet | |
湍流边界 | turbulent intensity and hydraulic diameter |
Table 2 Setup program for Fluent
名称 | 设置 | |
---|---|---|
求解算法 | pressure-based coupled algorithm | |
空间离散方式 | 梯度 | least squares cell-based |
压力项 | PRESTO! | |
其他项 | second order upwind | |
喷射器入口边界 | pressure-inlet | |
喷射器出口边界 | pressure-outlet | |
湍流边界 | turbulent intensity and hydraulic diameter |
组别 | 一次流入口 | 二次流入口 | 压力升程 | 质量流量/(kg/s) | |||
---|---|---|---|---|---|---|---|
Pp/MPa | Tp/℃ | Ps/MPa | Ts/℃ | Plift/MPa | mp | ms | |
1 | 7.70 | 32.10 | 4.35 | 23.60 | 0.43 | 0.0273 | 0.0131 |
2 | 7.78 | 32.40 | 4.34 | 23.50 | 0.43 | 0.0279 | 0.0150 |
3 | 7.93 | 33.30 | 4.36 | 23.20 | 0.44 | 0.0278 | 0.0167 |
4 | 8.07 | 34.20 | 4.35 | 23.0 | 0.45 | 0.0277 | 0.0183 |
5 | 8.21 | 35.20 | 4.34 | 22.70 | 0.47 | 0.0276 | 0.0193 |
6 | 8.29 | 35.60 | 4.21 | 22.0 | 0.46 | 0.0274 | 0.0225 |
7 | 8.30 | 35.70 | 4.22 | 22.20 | 0.49 | 0.0273 | 0.0195 |
8 | 8.38 | 36.50 | 4.32 | 22.70 | 0.48 | 0.0273 | 0.0206 |
9 | 8.65 | 39.0 | 4.29 | 22.50 | 0.51 | 0.0265 | 0.0217 |
10 | 8.80 | 41.0 | 4.28 | 22.60 | 0.53 | 0.0264 | 0.0225 |
11 | 8.96 | 43.40 | 4.28 | 22.50 | 0.55 | 0.0258 | 0.0231 |
Table 3 Experimental data for model reliability validation[30]
组别 | 一次流入口 | 二次流入口 | 压力升程 | 质量流量/(kg/s) | |||
---|---|---|---|---|---|---|---|
Pp/MPa | Tp/℃ | Ps/MPa | Ts/℃ | Plift/MPa | mp | ms | |
1 | 7.70 | 32.10 | 4.35 | 23.60 | 0.43 | 0.0273 | 0.0131 |
2 | 7.78 | 32.40 | 4.34 | 23.50 | 0.43 | 0.0279 | 0.0150 |
3 | 7.93 | 33.30 | 4.36 | 23.20 | 0.44 | 0.0278 | 0.0167 |
4 | 8.07 | 34.20 | 4.35 | 23.0 | 0.45 | 0.0277 | 0.0183 |
5 | 8.21 | 35.20 | 4.34 | 22.70 | 0.47 | 0.0276 | 0.0193 |
6 | 8.29 | 35.60 | 4.21 | 22.0 | 0.46 | 0.0274 | 0.0225 |
7 | 8.30 | 35.70 | 4.22 | 22.20 | 0.49 | 0.0273 | 0.0195 |
8 | 8.38 | 36.50 | 4.32 | 22.70 | 0.48 | 0.0273 | 0.0206 |
9 | 8.65 | 39.0 | 4.29 | 22.50 | 0.51 | 0.0265 | 0.0217 |
10 | 8.80 | 41.0 | 4.28 | 22.60 | 0.53 | 0.0264 | 0.0225 |
11 | 8.96 | 43.40 | 4.28 | 22.50 | 0.55 | 0.0258 | 0.0231 |
1 | Drake F. Stratospheric ozone depletion—an overview of the scientific debate[J]. Progress in Physical Geography, 1995, 19(1): 1-17. |
2 | Lashof D A, Ahuja D R. Relative contributions of greenhouse gas emissions to global warming[J]. Nature, 1990, 344(6266): 529-531. |
3 | Lorentzen G. The use of natural refrigerants: a complete solution to the CFC/HCFC predicament[J]. International Journal of Refrigeration, 1995, 18(3): 190-197. |
4 | Nekså P, Hafner A, Bredesen A, et al. CO2 as working fluid—technological development on the road to sustainable refrigeration[C]//Proceedings of the 12th IIR Gustav Lorentzen Natural Working Fluids Conference. Edinburgh, UK, 2016: 21-24. |
5 | Lorentzen G. Revival of carbon dioxide as a refrigerant[J]. International Journal of Refrigeration, 1994, 17(5): 292-301. |
6 | Sun F T, Ma Y T. Thermodynamic analysis of transcritical CO2 refrigeration cycle with an ejector[J]. Applied Thermal Engineering, 2011, 31(6/7): 1184-1189. |
7 | Li D, Groll E A. Transcritical CO2 refrigeration cycle with ejector-expansion device[J]. International Journal of Refrigeration, 2005, 28(5): 766-773. |
8 | 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923. |
Li Y F, Deng J Q, He Y. Numerical study on non-equilibrium condensation and flash evaporation mechanism during rapid expansion of transcritical CO2 [J]. CIESC Journal, 2022, 73(7): 2912-2923. | |
9 | Smolka J, Bulinski Z, Fic A, et al. A computational model of a transcritical R744 ejector based on a homogeneous real fluid approach[J]. Applied Mathematical Modelling, 2013, 37(3): 1208-1224. |
10 | Lemmon E, Huber M, McLinden M O. NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, version 8.0[DB]. 2007. |
11 | Fang Y, Poncet S, Nesreddine H, et al. An open-source density-based solver for two-phase CO2 compressible flows: verification and validation[J]. International Journal of Refrigeration, 2019, 106: 526-538. |
12 | Fang Y, de Lorenzo M, Lafon P, et al. An accurate and efficient look-up table equation of state for two-phase compressible flow simulations of carbon dioxide[J]. Industrial & Engineering Chemistry Research, 2018, 57(22): 7676-7691. |
13 | Bilicki Z, Kestin J. Physical aspects of the relaxation model in two-phase flow[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1990, 428(1875): 379-397. |
14 | Brown S, Martynov S, Mahgerefteh H, et al. A homogeneous relaxation flow model for the full bore rupture of dense phase CO2 pipelines[J]. International Journal of Greenhouse Gas Control, 2013, 17: 349-356. |
15 | Downar-Zapolski P, Bilicki Z, Bolle L, et al. The non-equilibrium relaxation model for one-dimensional flashing liquid flow[J]. International Journal of Multiphase Flow, 1996, 22(3): 473-483. |
16 | Palacz M, Haida M, Smolka J, et al. HEM and HRM accuracy comparison for the simulation of CO2 expansion in two-phase ejectors for supermarket refrigeration systems[J]. Applied Thermal Engineering, 2017, 115: 160-169. |
17 | Varga S, Lebre P M S, Oliveira A C. CFD study of a variable area ratio ejector using R600a and R152a refrigerants[J]. International Journal of Refrigeration, 2013, 36(1): 157-165. |
18 | Yan J, Cai W J. Area ratio effects to the performance of air-cooled ejector refrigeration cycle with R134a refrigerant[J]. Energy Conversion and Management, 2012, 53(1): 240-246. |
19 | Yan J, Cai W J, Li Y Z. Geometry parameters effect for air-cooled ejector cooling systems with R134a refrigerant[J]. Renewable Energy, 2012, 46: 155-163. |
20 | Ma X L, Zhang W, Omer S A, et al. Experimental investigation of a novel steam ejector refrigerator suitable for solar energy applications[J]. Applied Thermal Engineering, 2010, 30(11/12): 1320-1325. |
21 | Lin C, Cai W J, Li Y Z, et al. The characteristics of pressure recovery in an adjustable ejector multi-evaporator refrigeration system[J]. Energy, 2012, 46(1): 148-155. |
22 | Besagni G, Cristiani N. Multi-scale evaluation of an R290 variable geometry ejector[J]. Applied Thermal Engineering, 2021, 188: 116612. |
23 | Bouhanguel A, Desevaux P, Gavignet E. Flow visualization in supersonic ejectors using laser tomography techniques[J]. International Journal of Refrigeration, 2011, 34(7): 1633-1640. |
24 | Elbel S, Hrnjak P. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation[J]. International Journal of Refrigeration, 2008, 31(3): 411-422. |
25 | Schmidt D P, Gopalakrishnan S, Jasak H. Multi-dimensional simulation of thermal non-equilibrium channel flow[J]. International Journal of Multiphase Flow, 2010, 36(4): 284-292. |
26 | Angielczyk W, Bartosiewicz Y, Butrymowicz D, et al. 1-D modeling of supersonic carbon dioxide two-phase flow through ejector motive nozzle[C]//13th International Refrigeration and Air Conditioning Conference. Purdue, USA: Purdue University, 2010. |
27 | Haida M, Smolka J, Hafner A, et al. Modified homogeneous relaxation model for the R744 trans-critical flow in a two-phase ejector[J]. International Journal of Refrigeration, 2018, 85: 314-333. |
28 | Chen Z, Zhao H X, Kong F C, et al. Synergistic effect of adjustable ejector structure and operating parameters in solar-driven ejector refrigeration system[J]. Solar Energy, 2023, 250: 295-311. |
29 | 马一太. 自然工质二氧化碳制冷与热泵循环原理的研究与进展[M]. 北京: 科学出版社, 2017. |
Ma Y T. Research and Development on Refrigeration and Heat Pump Cycle with Natural Working Fluid Carbon Dioxide[M]. Beijing: Science Press, 2017. | |
30 | Zhu Y H, Jiang P X. Theoretical model of transcritical CO2 ejector with non-equilibrium phase change correlation[J]. International Journal of Refrigeration, 2018, 86: 218-227. |
31 | Liu G D, Wang Z, Zhao H X, et al. R744 ejector simulation based on homogeneous equilibrium model and its application in trans-critical refrigeration system[J]. Applied Thermal Engineering, 2022, 201: 117791. |
32 | Li F L, Li R R, Li X C, et al. Experimental investigation on a R134a ejector refrigeration system under overall modes[J]. Applied Thermal Engineering, 2018, 137: 784-791. |
33 | 金旭, 于跃, 陈作舟, 等. 超音速和亚音速喷嘴对可调式喷射器性能的影响[J]. 化工学报, 2018, 69(4): 1405-1411. |
Jin X, Yu Y, Chen Z Z, et al. Effects of supersonic and subsonic nozzles on performance of adjustable ejectors[J]. CIESC Journal, 2018, 69(4): 1405-1411. | |
34 | Han Y, Wang X D, Sun H, et al. CFD simulation on the boundary layer separation in the steam ejector and its influence on the pumping performance[J]. Energy, 2019, 167: 469-483. |
35 | Liu G D, Zhao H X, Deng J Q, et al. Performance improvement of CO2 two-phase ejector by combining CFD modeling, artificial neural network and genetic algorithm[J]. International Journal of Refrigeration, 2023, 154: 151-167. |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[3] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[4] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[5] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[10] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[11] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[12] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[13] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[14] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[15] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||