CIESC Journal ›› 2023, Vol. 74 ›› Issue (12): 4777-4791.DOI: 10.11949/0438-1157.20231035
• Reviews and monographs • Previous Articles Next Articles
Yanle LI(), Yilin LIU, Junjie HUO, Yanxia SUN, Shengde DONG, Xin HE, Qi XU, Luxiang MA, Yuan ZHOU(), Chunxi HAI()
Received:
2023-10-07
Revised:
2023-12-15
Online:
2024-02-19
Published:
2023-12-25
Contact:
Yuan ZHOU, Chunxi HAI
李彦乐(), 刘宜林, 霍俊杰, 孙艳霞, 董生德, 贺欣, 许琪, 马路祥, 周园(), 海春喜()
通讯作者:
周园,海春喜
作者简介:
李彦乐(1997—),男,硕士研究生,lyl2046767621@163.com
基金资助:
CLC Number:
Yanle LI, Yilin LIU, Junjie HUO, Yanxia SUN, Shengde DONG, Xin HE, Qi XU, Luxiang MA, Yuan ZHOU, Chunxi HAI. Research progress of aluminum adsorbents in lithium extraction from salt lakes[J]. CIESC Journal, 2023, 74(12): 4777-4791.
李彦乐, 刘宜林, 霍俊杰, 孙艳霞, 董生德, 贺欣, 许琪, 马路祥, 周园, 海春喜. 层状结构铝系吸附剂在盐湖提锂领域的研究[J]. 化工学报, 2023, 74(12): 4777-4791.
名称 | 国家 | Li+/% (质量分数) | Mg2+/% (质量分数) | Mg2+/Li+ |
---|---|---|---|---|
阿塔卡马盐湖 | 智利 | 0.157 | 0.965 | 6.147 |
乌尤尼盐湖 | 玻利维亚 | 0.032 | 0.650 | 20.313 |
银峰盐湖 | 美国 | 0.030 | 0.040 | 1.333 |
大盐湖 | 美国 | 0.006 | 0.800 | 133.333 |
斯马科弗盐湖 | 美国 | 0.038 | 0.750 | 19.737 |
克莱顿谷盐湖 | 美国 | 0.016 | 0.019 | 1.188 |
东台吉乃尔盐湖 | 中国 | 0.085 | 2.990 | 35.176 |
西台吉乃尔盐湖 | 中国 | 0.021 | 1.280 | 60.952 |
一里坪盐湖 | 中国 | 0.022 | 2.000 | 90.909 |
扎布耶盐湖城 | 中国 | 0.970 | 0.001 | 0.001 |
大柴旦盐湖 | 中国 | 0.020 | 1.300 | 65.000 |
扎布耶南湖 | 中国 | 0.141 | 0.0004 | 0.003 |
扎布耶北湖 | 中国 | 0.153 | 0.002 | 0.013 |
察尔汗盐湖 | 中国 | 0.0013 | 2.370 | 1823.077 |
Table 1 Distribution of brine water resources in salt lakes[13]
名称 | 国家 | Li+/% (质量分数) | Mg2+/% (质量分数) | Mg2+/Li+ |
---|---|---|---|---|
阿塔卡马盐湖 | 智利 | 0.157 | 0.965 | 6.147 |
乌尤尼盐湖 | 玻利维亚 | 0.032 | 0.650 | 20.313 |
银峰盐湖 | 美国 | 0.030 | 0.040 | 1.333 |
大盐湖 | 美国 | 0.006 | 0.800 | 133.333 |
斯马科弗盐湖 | 美国 | 0.038 | 0.750 | 19.737 |
克莱顿谷盐湖 | 美国 | 0.016 | 0.019 | 1.188 |
东台吉乃尔盐湖 | 中国 | 0.085 | 2.990 | 35.176 |
西台吉乃尔盐湖 | 中国 | 0.021 | 1.280 | 60.952 |
一里坪盐湖 | 中国 | 0.022 | 2.000 | 90.909 |
扎布耶盐湖城 | 中国 | 0.970 | 0.001 | 0.001 |
大柴旦盐湖 | 中国 | 0.020 | 1.300 | 65.000 |
扎布耶南湖 | 中国 | 0.141 | 0.0004 | 0.003 |
扎布耶北湖 | 中国 | 0.153 | 0.002 | 0.013 |
察尔汗盐湖 | 中国 | 0.0013 | 2.370 | 1823.077 |
方法 | 商业化利用盐湖 | 优势 | 劣势 |
---|---|---|---|
膜法 | 青海一里坪盐湖 (五矿盐湖有限公司) 青海西台吉乃尔盐湖 (青海中信国安锂业发展 有限公司) | 显著降低卤水中的镁锂比,降低了后续 提锂难度 | 易堵塞、重复利用率低、对卤水总盐度控制要求高 |
吸附法 | 青海察尔汗盐湖 (青海盐湖蓝科锂业股份有限公司) (西藏藏格锂业科技有限公司) | 高选择性、低成本、高效率、无污染 | 淡水消耗大、吸附容量不稳定、粉体吸附剂的流动性差、循环稳定性差、核心吸附剂关键材料性能提升仍需技术攻关 |
太阳池法 | 阿塔卡马盐湖,银峰盐湖(SQM, AL) 西藏扎布耶盐湖(西藏国能矿业 发展有限公司) | 绿色环保,充分利用盐湖区太阳能、风能等 提高盐湖的蒸发率,方便生产钾等副产品 | 需要大规模建设并维护盐田,初始投资金额大、较适用于低镁锂比盐湖,回收率低 |
溶剂萃取法 | 青海大柴旦盐湖(青海柴达木 兴华锂盐有限公司) (青海博华锂业有限公司) | 操作可连续化,速度快,生产周期短 | 有机溶剂有毒易燃,易腐蚀设备、成本高、 环保压力大 |
电化学法 | 西藏捌仟错盐湖 (江苏中南锂业有限公司) (西藏珠峰资源股份有限公司) | 高选择性、绿色环保、低成本 | 循环性有待提高、相关工艺仍需进一步优化、能耗相对较高 |
Table 2 Comparison of lithium extraction technologies[15-35]
方法 | 商业化利用盐湖 | 优势 | 劣势 |
---|---|---|---|
膜法 | 青海一里坪盐湖 (五矿盐湖有限公司) 青海西台吉乃尔盐湖 (青海中信国安锂业发展 有限公司) | 显著降低卤水中的镁锂比,降低了后续 提锂难度 | 易堵塞、重复利用率低、对卤水总盐度控制要求高 |
吸附法 | 青海察尔汗盐湖 (青海盐湖蓝科锂业股份有限公司) (西藏藏格锂业科技有限公司) | 高选择性、低成本、高效率、无污染 | 淡水消耗大、吸附容量不稳定、粉体吸附剂的流动性差、循环稳定性差、核心吸附剂关键材料性能提升仍需技术攻关 |
太阳池法 | 阿塔卡马盐湖,银峰盐湖(SQM, AL) 西藏扎布耶盐湖(西藏国能矿业 发展有限公司) | 绿色环保,充分利用盐湖区太阳能、风能等 提高盐湖的蒸发率,方便生产钾等副产品 | 需要大规模建设并维护盐田,初始投资金额大、较适用于低镁锂比盐湖,回收率低 |
溶剂萃取法 | 青海大柴旦盐湖(青海柴达木 兴华锂盐有限公司) (青海博华锂业有限公司) | 操作可连续化,速度快,生产周期短 | 有机溶剂有毒易燃,易腐蚀设备、成本高、 环保压力大 |
电化学法 | 西藏捌仟错盐湖 (江苏中南锂业有限公司) (西藏珠峰资源股份有限公司) | 高选择性、绿色环保、低成本 | 循环性有待提高、相关工艺仍需进一步优化、能耗相对较高 |
吸附剂 | 原料 | 条件 | 吸附性能 | 文献 |
---|---|---|---|---|
Al(OH)3 | AlCl3·6H2O,NaOH,brine | T = 30℃ C(Li+) ≈ 1145 mg/L | 吸附率76.4% | [ |
Al(OH)3 | AlCl3·6H2O,KOH,LiCl | T = 80℃ C(Li+) ≈ 208~350 mg/L | 吸附率95% | [ |
Al(OH)3 | AlCl3·6H2O,NaOH,brine | T = 30℃ C(Li+) ≈ 5.5~19.5 mg/L | 吸附率93% | [ |
Al(OH)3 | Al(OH)3,LiOH·H2O,HCl | — | 吸附率91% | [ |
Al(OH)3 | 铝粉,NaCl,brine | C(Li+) ≈ 1000 mg/L Mg2+/Li+ ≈ 20 | 吸附率78.3% | [ |
Li/Al-LDHs | AlCl3·6H2O,NaOH,Na2CO3 | C(Li+) ≈ 675 mg/L Mg2+/Li+ ≈ 0.08 Na+/Li+ ≈ 48.7 | 吸附率96.07% | [ |
Li/Al-LDHs | LiCl, AlCl3,NaOH | C(Li+) ≈ 399 mg/L Mg2+/Li+ ≈ 302 | 吸附容量 ≈ 7.27 mg/g | [ |
Li/Al-LDHs | AlCl3·6H2O,NaOH,LiCl | C(Li+) ≈ 399 mg/L Mg2+/Li+ ≈ 302 | 吸附容量 ≈ 5.69 mg/g | [ |
Li/Al-LDHs | Fe3O4,AlCl3·6H2O,NaOH,LiCl | C(Li+) ≈ 370 mg/L Mg2+/Li+ ≈ 330 | 吸附容量 ≈ 6 mg/g | [ |
Li/Al-LDHs | Al2(SO4)3·18H2O,LiOH·H2O,尿素 | C(Li+) ≈ 969 mg/L Mg2+/Li+ ≈ 35 Na+/Li+ ≈ 80 | 吸附容量 ≈ 9.16 mg/g | [ |
Li/Al-LDHs | LiCl,尿素,铝箔 | C(Li+) ≈ 527 mg/L | 吸附率60% | [ |
Li-Al-O-OH | LiCl,尿素,铝箔,Na2SO4 | C(Li+) ≈ 527 mg/L | 吸附率55% | [ |
Table 3 Synthesis method and adsorption properties of Li/Al-LDHs
吸附剂 | 原料 | 条件 | 吸附性能 | 文献 |
---|---|---|---|---|
Al(OH)3 | AlCl3·6H2O,NaOH,brine | T = 30℃ C(Li+) ≈ 1145 mg/L | 吸附率76.4% | [ |
Al(OH)3 | AlCl3·6H2O,KOH,LiCl | T = 80℃ C(Li+) ≈ 208~350 mg/L | 吸附率95% | [ |
Al(OH)3 | AlCl3·6H2O,NaOH,brine | T = 30℃ C(Li+) ≈ 5.5~19.5 mg/L | 吸附率93% | [ |
Al(OH)3 | Al(OH)3,LiOH·H2O,HCl | — | 吸附率91% | [ |
Al(OH)3 | 铝粉,NaCl,brine | C(Li+) ≈ 1000 mg/L Mg2+/Li+ ≈ 20 | 吸附率78.3% | [ |
Li/Al-LDHs | AlCl3·6H2O,NaOH,Na2CO3 | C(Li+) ≈ 675 mg/L Mg2+/Li+ ≈ 0.08 Na+/Li+ ≈ 48.7 | 吸附率96.07% | [ |
Li/Al-LDHs | LiCl, AlCl3,NaOH | C(Li+) ≈ 399 mg/L Mg2+/Li+ ≈ 302 | 吸附容量 ≈ 7.27 mg/g | [ |
Li/Al-LDHs | AlCl3·6H2O,NaOH,LiCl | C(Li+) ≈ 399 mg/L Mg2+/Li+ ≈ 302 | 吸附容量 ≈ 5.69 mg/g | [ |
Li/Al-LDHs | Fe3O4,AlCl3·6H2O,NaOH,LiCl | C(Li+) ≈ 370 mg/L Mg2+/Li+ ≈ 330 | 吸附容量 ≈ 6 mg/g | [ |
Li/Al-LDHs | Al2(SO4)3·18H2O,LiOH·H2O,尿素 | C(Li+) ≈ 969 mg/L Mg2+/Li+ ≈ 35 Na+/Li+ ≈ 80 | 吸附容量 ≈ 9.16 mg/g | [ |
Li/Al-LDHs | LiCl,尿素,铝箔 | C(Li+) ≈ 527 mg/L | 吸附率60% | [ |
Li-Al-O-OH | LiCl,尿素,铝箔,Na2SO4 | C(Li+) ≈ 527 mg/L | 吸附率55% | [ |
1 | Hammond D R, Brady T F. Critical minerals for green energy transition: a United States perspective[J]. International Journal of Mining, Reclamation and Environment, 2022, 36: 624-641. |
2 | Heredia F, Martinez A L, Surraco Urtubey V. The importance of lithium for achieving a low-carbon future: overview of the lithium extraction in the ‘Lithium Triangle’[J]. Journal of Energy & Natural Resources Law, 2020, 38(3): 213-236. |
3 | Geological Survey U.S.. Mineral commodity summary-lithium carbonate[R]. U.S. Geological Survey, 2022. |
4 | Xi W W, Zhao Y H, Ni P, et al. Main types, characteristics, distributions, and prospecting potential of lithium deposits[J]. Sedimentary Geology and Tethyan Geology, 2023, 43(1): 19-35. |
5 | Yu F, Wang D F, Yu Y, et al. The distribution and exploration status of domestic and foreign sedimentary-type lithium deposits[J]. Rock and Mineral Analysis, 2019, 38(3): 354-364. |
6 | Zhu L, Gu H N, Wen H J, et al. Lithium extraction from clay-type lithium resource using ferric sulfate solutions via an ion-exchange leaching process[J]. Hydrometallurgy, 2021, 206: 105759. |
7 | Kundu T, Rath S S, Das S K, et al. Recovery of lithium from spodumene-bearing pegmatites: a comprehensive review on geological reserves, beneficiation, and extraction[J]. Powder Technology, 2023, 415: 118142. |
8 | Yang H P, Liu L, Ding G F, et al. Present situation and development trend of lithium resources in the world[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 26-40. |
9 | Yelatontsev D, Mukhachev A. Processing of lithium ores: industrial technologies and case studies — a review[J]. Hydrometallurgy, 2021, 201: 105578. |
10 | Swain B. Recovery and recycling of lithium: a review[J]. Separation and Purification Technology, 2017, 172: 388-403. |
11 | Kavanagh L, Lloyd A, Cabellos G, et al. Global lithium sources—industrial use and future in the electric vehicle industry: a review [J]. Resources, 2018, 7(3): 57. |
12 | Pramanik B K, Nghiem L D, Hai F I. Extraction of strategically important elements from brines: constraints and opportunities[J]. Water Research, 2020, 168: 115149. |
13 | Stringfellow W T, Dobson P F. Technology for the recovery of lithium from geothermal brines[J]. Energies, 2021, 14(20): 6805. |
14 | Chen J, Lin S, Yu J G. Quantitative effects of Fe3O4 nanoparticle content on Li+ adsorption and magnetic recovery performances of magnetic lithium-aluminum layered double hydroxides in ultrahigh Mg/Li ratio brines[J]. Journal of Hazardous Materials, 2020, 388: 122101. |
15 | Butt F S, Lewis A, Chen T, et al. Lithium harvesting from the most abundant primary and secondary sources: a comparative study on conventional and membrane technologies[J]. Membranes, 2022, 12(4): 373. |
16 | Yang J L, Li L S, Tang Z Y. An efficient lithium extraction pathway in covalent organic framework membranes[J]. Matter, 2021, 4(8): 2666-2668. |
17 | Hou J E, Zhang H C, Thornton A W, et al. Lithium extraction by emerging metal-organic framework-based membranes[J]. Advanced Functional Materials, 2021, 31(46): 2105991. |
18 | Xiao H, Chai M, Hosseini A, et al. UiO-66-(COONa)2 membrane with programmable ionic channels for lithium ion-selective transport[J]. Journal of Membrane Science, 2023, 670: 121312. |
19 | Zuo P P, Xu Z A, Zhu Q, et al. Ion exchange membranes: constructing and tuning ion transport channels[J]. Advanced Functional Materials, 2022, 32(52): 2007366. |
20 | Yang J Q, Qu G R, Liu C P, et al. An effective lithium ion-imprinted membrane containing 12-crown ether-4 for selective recovery of lithium[J]. Chemical Engineering Research and Design, 2022, 184: 639-650. |
21 | Luo Q L, Dong M Z, Nie G L, et al. Extraction of lithium from salt lake brines by granulated adsorbents[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628: 127256. |
22 | Li X W, Chao Y H, Chen L L, et al. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources[J]. Chemical Engineering Journal, 2020, 392: 123731. |
23 | Zhang G T, Zhang J Z, Zeng J B, et al. Improved structural stability and adsorption capacity of adsorbent material Li1.6Mn1.6O4 via facile surface fluorination[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127465. |
24 | Zhang G T, Zhang J Z, Zhou Y, et al. Synthesis of aluminum-doped ion-sieve manganese oxides powders with enhanced adsorption performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583: 123950. |
25 | Zhang G T, Hai C X, Zhou Y, et al. Al and F ions co-modified Li1.6Mn1.6O4 with obviously enhanced Li+ adsorption performances[J]. Chemical Engineering Journal, 2022, 450: 137912. |
26 | Santoro S, Aquino M, Rizza C, et al. Lithium recovery through WS2 nanofillers-promoted solar photothermal membrane crystallization of LiCl[J]. Desalination, 2023, 546: 116186. |
27 | Zhang Y, Hu Y H, Wang L, et al. Systematic review of lithium extraction from salt-lake brines via precipitation approaches[J]. Minerals Engineering, 2019, 139: 105868. |
28 | Li X H, Mo Y H, Qing W H, et al. Membrane-based technologies for lithium recovery from water lithium resources: a review[J]. Journal of Membrane Science, 2019, 591(10): 117317. |
29 | Coterillo R, Gallart L E, Fernández-Escalante E, et al. Selective extraction of lithium from seawater desalination concentrates: study of thermodynamic and equilibrium properties using density functional theory (DFT)[J]. Desalination, 2022, 532: 115704. |
30 | Shi D, Cui B, Li L J, et al. Removal of calcium and magnesium from lithium concentrated solution by solvent extraction method using D2EHPA[J]. Desalination, 2020, 479: 114306. |
31 | Battistel A, Palagonia M S, Brogioli D, et al. Electrochemical methods for lithium recovery: a comprehensive and critical review[J]. Advanced Materials, 2020, 32(23): 1905440. |
32 | Liu D F, Zhao Z W, Xu W H, et al. A closed-loop process for selective lithium recovery from brines via electrochemical and precipitation[J]. Desalination, 2021, 519: 115302. |
33 | Palagonia M S, Brogioli D, La Mantia F. Lithium recovery from diluted brine by means of electrochemical ion exchange in a flow-through-electrodes cell[J]. Desalination, 2020, 475: 114192. |
34 | Bazrgar Bajestani M, Moheb A, Dinari M. Preparation of lithium ion-selective cation exchange membrane for lithium recovery from sodium contaminated lithium bromide solution by electrodialysis process[J]. Desalination, 2020, 486: 114476. |
35 | Perez-Antolin D, Irastorza C, Gonzalez S, et al. Regenerative electrochemical ion pumping cell based on semi-solid electrodes for sustainable Li recovery[J]. Desalination, 2022, 533: 115764. |
36 | Xu P, Hong J, Qian X, et al. Materials for lithium recovery from salt lake brine[J]. Journal of Materials Science, 2021, 56(1): 16-63. |
37 | Dessemond C, Lajoie-Leroux F, Soucy G, et al. Spodumene: the lithium market, resources and processes[J]. Minerals, 2019, 9(6): 334. |
38 | Li H, Eksteen J, Kuang G. Recovery of lithium from mineral resources: state-of-the-art and perspectives — a review[J]. Hydrometallurgy, 2019, 189: 105129. |
39 | Taviot-Guého C, Prévot V, Forano C, et al. Tailoring hybrid layered double hydroxides for the development of innovative applications[J]. Advanced Functional Materials, 2018, 28(27): 1703868. |
40 | Goh K H, Lim T T, Dong Z L. Application of layered double hydroxides for removal of oxyanions: a review[J]. Water Research, 2008, 42(6/7): 1343-1368. |
41 | Lin S, Pan Y N, Du J L, et al. Double-edged role of interlayer water on Li+ extraction from ultrahigh Mg2+/Li+ ratio brines using Li/Al-LDHs[J]. Journal of Colloid and Interface Science, 2022, 627: 872-879. |
42 | Liu H M, Zhao X J, Zhu Y Q, et al. DFT study on MgAl-layered double hydroxides with different interlayer anions: structure, anion exchange, host-guest interaction and basic sites[J]. Physical Chemistry Chemical Physics: PCCP, 2020, 22(4): 2521-2529. |
43 | Miyata S. Anion-exchange properties of hydrotalcite-like compounds[J]. Clays and Clay Minerals, 1983, 31(4): 305-311. |
44 | Newman S P, Synthesis Jones W., characterization and applications of layered double hydroxides containing organic guests[J]. New Journal of Chemistry, 1998, 22(2): 105-115. |
45 | Graham T R, Hu J Z, Zhang X, et al. Unraveling gibbsite transformation pathways into LiAl-LDH in concentrated lithium hydroxide[J]. Inorganic Chemistry, 2019, 58(18): 12385-12394. |
46 | Isupov V P, Gabuda S P, Kozlova S G, et al. Structural mechanism of selective binding of lithium on a solid matrix of Al(OH)3 from aqueous solutions[J]. Journal of Structural Chemistry, 1998, 39(3): 362-366. |
47 | Li Y Y, Tang N, Zhang L, et al. Fabrication of Fe-doped lithium-aluminum-layered hydroxide chloride with enhanced reusable stability inspired by computational theory and its application in lithium extraction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658: 130641. |
48 | Pauwels H, Brach M, Fouillac C. Study of Li+ adsorption onto polymeric aluminium (Ⅲ) hydroxide for application in the treatment of geothermal waters[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 100: 73-82. |
49 | Williams G R, O'Hare D. A kinetic study of the intercalation of lithium salts into Al(OH)3 [J]. The Journal of Physical Chemistry B, 2006, 110(22): 10619-10629. |
50 | Hawash S, Kader E A, Diwani G E. Methodology for selective adsorption of lithium ions onto polymeric aluminium (Ⅲ)[J]. Hydroxide, 2010, 6(11): 301-309. |
51 | Heidari N, Momeni P. Selective adsorption of lithium ions from Urmia Lake onto aluminum hydroxide[J]. Environmental Earth Sciences, 2017, 76(16): 551. |
52 | Menzheres L T, Ryabtsev A D, Mamylova E V. Synthesis of selective sorbent LiCl·2Al(OH)3·nH2O[J]. Theoretical Foundations of Chemical Engineering, 2019, 53(5): 821-826. |
53 | Paranthaman M P, Li L, Luo J Q, et al. Recovery of lithium from geothermal brine with lithium-aluminum layered double hydroxide chloride sorbents[J]. Environmental Science & Technology, 2017, 51(22): 13481-13486. |
54 | Liu X H, Zhong M L, Chen X Y, et al. Separating lithium and magnesium in brine by aluminum-based materials[J]. Hydrometallurgy, 2018, 176: 73-77. |
55 | Sun Y, Guo X Y, Hu S F, et al. Highly efficient extraction of lithium from salt lake brine by LiAl-layered double hydroxides as lithium-ion-selective capturing material[J]. Journal of Energy Chemistry, 2019, 34: 80-87. |
56 | Jiang H X, Zhang S Y, Yang Y, et al. Synergic and competitive adsorption of Li-Na-MgCl2 onto lithium-aluminum hydroxides[J]. Adsorption, 2020, 26(7): 1039-1049. |
57 | Zhong J, Lin S, Yu J G. Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brines[J]. Desalination, 2021, 505: 114983. |
58 | Hu F P, Lin S, Li P, et al. Quantitative effects of desorption intensity on structural stability and readsorption performance of lithium/aluminum layered double hydroxides in cyclic Li+ extraction from brines with ultrahigh Mg/Li ratio[J]. Industrial & Engineering Chemistry Research, 2020, 59(30): 13539-13548. |
59 | Chen J, Yuan H F, Yu J G, et al. Regulating lithium extraction based on intercalated S O 4 2 - in Li/Al-LDHs[J]. Journal of Colloid and Interface Science, 2023, 649: 694-702. |
60 | Lee Y J, Cha J H, Jung D Y. Selective lithium adsorption of silicon oxide coated lithium aluminum layered double hydroxide nanocrystals and their regeneration[J]. Chemistry - An Asian Journal, 2021, 16(8): 974-980. |
61 | Lee Y J, Jung D Y. Lithium intercalation and deintercalation of thermally decomposed LiAl2-layered double hydroxides[J]. Applied Clay Science, 2022, 228: 106631. |
62 | Zhong J, Lin S, Yu J G. Effects of excessive lithium deintercalation on Li+ adsorption performance and structural stability of lithium/aluminum layered double hydroxides[J]. Journal of Colloid and Interface Science, 2020, 572: 107-113. |
63 | Zhong J, Lin S, Yu J G. Lithium recovery from ultrahigh Mg2+/Li+ ratio brine using a novel granulated Li/Al-LDHs adsorbent[J]. Separation and Purification Technology, 2021, 256: 117780. |
64 | Chen J, Du J L, Yu J G, et al. A one-step regeneration method in situ for deactivated aluminum-based lithium adsorbent used in high Mg2+/Li+ brines[J]. Desalination, 2023, 554: 116491. |
65 | Zhou J, Lin Z, Ren H, et al. Layered intercalation materials[J]. Advanced Materials, 2021, 33(25): 2004557. |
66 | Zhu S D, Khan M A, Wang F Y, et al. Rapid removal of toxic metals Cu2+ and Pb2+ by amino trimethylene phosphonic acid intercalated layered double hydroxide: a combined experimental and DFT study[J]. Chemical Engineering Journal, 2020, 392: 123711. |
67 | Ma L J, Islam S M, Xiao C L, et al. Rapid simultaneous removal of toxic anions [HSeO3]-, [SeO3]2-, and [SeO4]2-, and metals Hg2+, Cu2+, and Cd2+ by M o S 4 2 - intercalated layered double hydroxide[J]. Journal of the American Chemical Society, 2017, 139(36): 12745-12757. |
68 | Yang L X, Xie L X, Chu M L, et al. M o 3 S 13 2 - intercalated layered double hydroxide: highly selective removal of heavy metals and simultaneous reduction of Ag+ ions to metallic Ag0 ribbons[J]. Angewandte Chemie (International Ed. in English), 2022, 61(1): e202112511. |
69 | Lv S, Zhao Y L, Zhang L J, et al. Anion regulation strategy of lithium-aluminum layered double hydroxides for strengthening resistance to deactivation in lithium recovery from brines[J]. Chemical Engineering Journa, 2023, 472: 145026. |
70 | Li J, Luo Q L, Dong M Z, et al. Synthesis of granulated Li/Al-LDHs adsorbent and application for recovery of Li from synthetic and real salt lake brines[J]. Hydrometallurgy, 2022, 209: 105828. |
71 | Xu H, Yuan H F, Yu J G, et al. Study on the competitive adsorption and correlational mechanism for heavy metal ions using the carboxylated magnetic iron oxide nanoparticles (MNPs-COOH) as efficient adsorbents[J]. Applied Surface Science, 2019, 473: 960-966. |
72 | Chen J, Lin S, Yu J G. High-selective cyclic adsorption and magnetic recovery performance of magnetic lithium-aluminum layered double hydroxides (MLDHs) in extracting Li+ from ultrahigh Mg/Li ratio brines[J]. Separation and Purification Technology, 2021, 255: 117710. |
73 | Yu T M, Caroline Reis Meira A, Cristina Kreutz J, et al. Exploring the surface reactivity of the magnetic layered double hydroxide lithium-aluminum: an alternative material for sorption and catalytic purposes[J]. Applied Surface Science, 2019, 467/468: 1195-1203. |
74 | Luo Q L, Dong M Z, Li Q, et al. Improve the durability of lithium adsorbent Li/Al-LDHs by Fe3+ substitution and nanocomposite of FeOOH[J]. Minerals Engineering, 2022, 185: 107717. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[3] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[4] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[5] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[6] | Zhiping ZHAO, Chen CHEN, Qiong TANG, Hong XU, Lei LIU, Jinxiang DONG. Rheological and tribological properties of poly-hexylnaphthalene/ poly-α-olefin lithium grease [J]. CIESC Journal, 2023, 74(6): 2555-2564. |
[7] | Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components [J]. CIESC Journal, 2023, 74(6): 2322-2334. |
[8] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[9] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
[10] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[11] | Zhongliang XIAO, Bilu YIN, Liubin SONG, Yinjie KUANG, Tingting ZHAO, Cheng LIU, Rongyao YUAN. Research progress of waste lithium-ion battery recycling process and its safety risk analysis [J]. CIESC Journal, 2023, 74(4): 1446-1456. |
[12] | Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 571-584. |
[13] | Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689. |
[14] | Min LI, Xueru YAN, Xinlei LIU. Advances in benzimidazole-linked polymer adsorbents and membranes [J]. CIESC Journal, 2023, 74(2): 599-616. |
[15] | Lihan ZHENG, Zhichuan SHEN, Zhicong SHI. Research progress on solid electrolyte interphase of lithium metal [J]. CIESC Journal, 2023, 74(12): 4764-4776. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1310
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 520
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||