CIESC Journal ›› 2023, Vol. 74 ›› Issue (12): 4764-4776.DOI: 10.11949/0438-1157.20231155
• Reviews and monographs • Previous Articles Next Articles
Lihan ZHENG(), Zhichuan SHEN, Zhicong SHI()
Received:
2023-11-09
Revised:
2023-12-26
Online:
2024-02-19
Published:
2023-12-25
Contact:
Zhicong SHI
通讯作者:
施志聪
作者简介:
郑立涵(2000—),男,硕士研究生,15560520693@163.com
基金资助:
CLC Number:
Lihan ZHENG, Zhichuan SHEN, Zhicong SHI. Research progress on solid electrolyte interphase of lithium metal[J]. CIESC Journal, 2023, 74(12): 4764-4776.
郑立涵, 沈之川, 施志聪. 金属锂固体电解质界面膜的研究进展[J]. 化工学报, 2023, 74(12): 4764-4776.
Add to citation manager EndNote|Ris|BibTeX
成分 | 来源 | 作用 | 文献 |
---|---|---|---|
Li2O | 在碳酸酯类或醚类电解液中产生 | 提高SEI膜的稳定性、离子电导率和机械强度 | [ |
Li2CO3 | 由碳酸脂类电解质中的烷基碳酸锂与痕量水反应产生 | 提高SEI膜的机械强度,是所有成分中吸湿性最小的稳定化合物 | [ |
LiN x O y | 由LiNO3或ISDN分解产生 | 改善SEI膜的均匀性,有效抑制了电解质和锂金属负极之间的副反应 | [ |
Li3N | LiNO3添加剂或电解质中的 | 具有高电导率,可以促进SEI膜中Li+的运输 | [ |
Li2S | 由电解质中的多硫化物与Li+反应生成或从含有LiTFSI 或LiFTFSI的电解质中还原形成 | 可以提高SEI膜的稳定性,改善Li+在SEI膜的扩散,促进均匀的Li沉积 | [ |
LiF | 由电解质中的含氟锂盐(如LiPF6、LiTFSI、LiFSI等) 或添加剂(如FEC等)产生 | 具有高的化学稳定性和机械强度以及低的Li+扩散势垒,可以抑制负极表面的锂枝晶生长 | [ |
LiH | 由氢和沉积Li反应生成或者通过溶剂、H2O和LiOH产生 | 消耗活性Li,破坏锂金属负极的循环稳定性 | [ |
有机成分 | 由电解质分解产生 | 调节SEI膜的力学性能,提高柔韧性,降低SEI膜的致密性,影响Li+扩散 | [ |
Table 1 The sources and functions of common components in SEI
成分 | 来源 | 作用 | 文献 |
---|---|---|---|
Li2O | 在碳酸酯类或醚类电解液中产生 | 提高SEI膜的稳定性、离子电导率和机械强度 | [ |
Li2CO3 | 由碳酸脂类电解质中的烷基碳酸锂与痕量水反应产生 | 提高SEI膜的机械强度,是所有成分中吸湿性最小的稳定化合物 | [ |
LiN x O y | 由LiNO3或ISDN分解产生 | 改善SEI膜的均匀性,有效抑制了电解质和锂金属负极之间的副反应 | [ |
Li3N | LiNO3添加剂或电解质中的 | 具有高电导率,可以促进SEI膜中Li+的运输 | [ |
Li2S | 由电解质中的多硫化物与Li+反应生成或从含有LiTFSI 或LiFTFSI的电解质中还原形成 | 可以提高SEI膜的稳定性,改善Li+在SEI膜的扩散,促进均匀的Li沉积 | [ |
LiF | 由电解质中的含氟锂盐(如LiPF6、LiTFSI、LiFSI等) 或添加剂(如FEC等)产生 | 具有高的化学稳定性和机械强度以及低的Li+扩散势垒,可以抑制负极表面的锂枝晶生长 | [ |
LiH | 由氢和沉积Li反应生成或者通过溶剂、H2O和LiOH产生 | 消耗活性Li,破坏锂金属负极的循环稳定性 | [ |
有机成分 | 由电解质分解产生 | 调节SEI膜的力学性能,提高柔韧性,降低SEI膜的致密性,影响Li+扩散 | [ |
Fig.2 Cryo-electron microscopy images and structural diagrams of SEI under different electrolyte conditions: (a) Atomic-resolution image of the SEI formed in EC/DEC electrolyte; (b) Schematic of the mosaic-type SEI formed in EC/DEC electrolyte; (c) Atomic-resolution image of the SEI formed in FEC electrolyte; (d) Schematic of the multilayered SEI formed in FEC electrolyte[56]
影响因素 | 影响作用 | 文献 |
---|---|---|
电解质添加剂 | 不同的添加剂与各种电解质盐具有不同的电化学稳定性窗口,可以促进或抑制电解质中某种反应的发生或某种物质的分解,又或者是自身参与反应,从而改变SEI膜的结构和成分 | [ |
电极电位 | 阳极的电极电位能够显著影响溶剂在阳极表面还原反应的ΔGm,当电位较低时,无机成分和有机成分还原反应的ΔGm不同,无机成分优先在电极表面还原,SEI膜呈层状结构。当电位较高时有机和无机化合物同时生成,形成的SEI膜呈镶嵌结构 | [ |
温度 | 当温度较低时,Li+的扩散速度和电解质体系的反应动力学减慢,容易产生锂枝晶;当温度较高时,由于反应动力学加快,生成的SEI膜更厚,并且某些组分可能发生自发分解或者倾向于在表面呈大晶粒状 | [ |
电流密度 | 不同的电流密度可以影响离子的浓度梯度、扩散速率以及电极表面的电化学反应速率。在低电流密度下形成的SEI膜主要由有机物组成,呈无定形结构;在高电流密度下形成的SEI膜是镶嵌结构,无机物嵌入在由有机物组成的无定形基质中,可能对SEI膜造成破坏 | [ |
交流电场 | 在SEI膜形成时对电极表面施加交流电场可以促进大量阴离子在锂金属负极表面聚集并分解,可形成由阴离子衍生的SEI膜 | [ |
压力 | 较低的压力会促进富含有机物的SEI膜和非均质、细丝状、分布有孔隙的锂沉积物生成,较高的压力可促进富含氟元素的无机SEI膜生成,能够形成更均匀、更致密的锂薄膜 | [ |
Table 2 Factors and their effects on the composition and morphological structure of SEI
影响因素 | 影响作用 | 文献 |
---|---|---|
电解质添加剂 | 不同的添加剂与各种电解质盐具有不同的电化学稳定性窗口,可以促进或抑制电解质中某种反应的发生或某种物质的分解,又或者是自身参与反应,从而改变SEI膜的结构和成分 | [ |
电极电位 | 阳极的电极电位能够显著影响溶剂在阳极表面还原反应的ΔGm,当电位较低时,无机成分和有机成分还原反应的ΔGm不同,无机成分优先在电极表面还原,SEI膜呈层状结构。当电位较高时有机和无机化合物同时生成,形成的SEI膜呈镶嵌结构 | [ |
温度 | 当温度较低时,Li+的扩散速度和电解质体系的反应动力学减慢,容易产生锂枝晶;当温度较高时,由于反应动力学加快,生成的SEI膜更厚,并且某些组分可能发生自发分解或者倾向于在表面呈大晶粒状 | [ |
电流密度 | 不同的电流密度可以影响离子的浓度梯度、扩散速率以及电极表面的电化学反应速率。在低电流密度下形成的SEI膜主要由有机物组成,呈无定形结构;在高电流密度下形成的SEI膜是镶嵌结构,无机物嵌入在由有机物组成的无定形基质中,可能对SEI膜造成破坏 | [ |
交流电场 | 在SEI膜形成时对电极表面施加交流电场可以促进大量阴离子在锂金属负极表面聚集并分解,可形成由阴离子衍生的SEI膜 | [ |
压力 | 较低的压力会促进富含有机物的SEI膜和非均质、细丝状、分布有孔隙的锂沉积物生成,较高的压力可促进富含氟元素的无机SEI膜生成,能够形成更均匀、更致密的锂薄膜 | [ |
5 | Wu W L, Xu Y T, Ke X, et al. Superorganophilic MAF-6/PP composite separator boosts lithium metal anode performance[J]. Energy Storage Materials, 2021, 37: 387-395. |
6 | Huang J Q, Shen Z C, Robertson S J, et al. Fluorine grafted gel polymer electrolyte by in situ construction for high-voltage lithium metal batteries[J]. Chemical Engineering Journal, 2023, 475: 145802. |
7 | Chen J B, Li D D, Lin K J, et al. Building a stable artificial solid electrolyte interphase on lithium metal anodes toward long-life Li-O2 batteries[J]. Journal of Power Sources, 2022, 540: 231603. |
8 | Pu J, Xue P, Li T T, et al. In situ regulation of dendrite-free lithium anode by improved solid electrolyte interface with defect-rich boron nitride quantum dots[J]. Journal of Materials Chemistry A, 2022, 10(38): 20265-20272. |
9 | Xie X T, Chen J B, Chen X Y, et al. Exploring the effect of lithium halide artificial SEI on the electrochemical performance of lithium metal batteries[J]. Journal of Electroanalytical Chemistry, 2023, 949: 117862. |
10 | Li D D, Chen J B, Chen Y T, et al. Superior oxygen electrocatalyst derived from metal organic coordination polymers by instantaneous nucleation and epitaxial growth for rechargeable Li-O2 battery[J]. Journal of Energy Chemistry, 2023, 78: 169-177. |
11 | Meda U S, Lal L, Sushantha M, et al. Solid electrolyte interphase (SEI), a boon or a bane for lithium batteries: a review on the recent advances[J]. Journal of Energy Storage, 2022, 47: 103564. |
12 | Cheng Y F, Chen J B, Chen Y M, et al. Lithium host: advanced architecture components for lithium metal anode[J]. Energy Storage Materials, 2021, 38: 276-298. |
13 | Wu Y, Wang C, Wang C J, et al. Recent progress in SEI engineering for boosting Li metal anodes[J]. Materials Horizons, 2023. DOI: 10.1039/d3mh01434g . |
14 | Zhao Q, Stalin S, Archer L A. Stabilizing metal battery anodes through the design of solid electrolyte interphases[J]. Joule, 2021, 5(5): 1119-1142. |
15 | Ding J F, Xu R, Yan C, et al. A review on the failure and regulation of solid electrolyte interphase in lithium batteries[J]. Journal of Energy Chemistry, 2021, 59: 306-319. |
16 | Tan J, Ma L L, Li Z H, et al. Structural insights into solid electrolyte interphase (SEI) on lithium metal anode: from design strategies to the stability evaluation[J]. Materials Today, 2023, 69: 287-332. |
17 | Shadike Z, Lee H, Borodin O, et al. Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes[J]. Nature Nanotechnology, 2021, 16: 549-554. |
18 | Zheng J H, Ju Z J, Zhang B L, et al. Lithium ion diffusion mechanism on the inorganic components of the solid-electrolyte interphase[J]. Journal of Materials Chemistry A, 2021, 9(16): 10251-10259. |
19 | Heiskanen S K, Kim J, Lucht B L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries[J]. Joule, 2019, 3(10): 2322-2333. |
20 | Ye H J, Gui S W, Wang Z F, et al. In situ measurements of the mechanical properties of electrochemically deposited Li2CO3 and Li2O nanorods[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44479-44487. |
21 | Guo R, Gallant B M. Li2O solid electrolyte interphase: probing transport properties at the chemical potential of lithium[J]. Chemistry of Materials, 2020, 32(13): 5525-5533. |
22 | Kim M S, Zhang Z W, Rudnicki P E, et al. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries[J]. Nature Materials, 2022, 21: 445-454. |
23 | Wen Y C, Ding J Y, Yang Y, et al. Introducing N O 3 - into carbonate-based electrolytes via covalent organic framework to incubate stable interface for Li-metal batteries[J]. Advanced Functional Materials, 2022, 32(15): 2109377. |
24 | Tan J, Ye M X, Shen J F. Deciphering the role of LiNO3 additives in Li-S batteries[J]. Materials Horizons, 2022, 9(9): 2325-2334. |
25 | Li X, Zhao R X, Fu Y Z, et al. Nitrate additives for lithium batteries: mechanisms, applications, and prospects[J]. eScience, 2021, 1(2): 108-123. |
26 | Ma X Y, Yu J T, Zou X Y, et al. Single additive to regulate lithium-ion solvation structure in carbonate electrolytes for high-performance lithium-metal batteries[J]. Cell Reports Physical Science, 2023, 4: 101379. |
27 | Zhang Q K, Sun S Y, Zhou M Y, et al. Reforming the uniformity of solid electrolyte interphase by nanoscale structure regulation for stable lithium metal batteries[J]. Angewandte Chemie (International Ed. in English), 2023, 62(42): e202306889. |
28 | Shan X Y, Zhong Y, Zhang L J, et al. A brief review on solid electrolyte interphase composition characterization technology for lithium metal batteries: challenges and perspectives[J]. The Journal of Physical Chemistry C, 2021, 125(35): 19060-19080. |
29 | Liu F F, Wang L F, Zhang Z W, et al. A mixed lithium-ion conductive Li2S/Li2Se protection layer for stable lithium metal anode[J]. Advanced Functional Materials, 2020, 30(23): 2001607. |
30 | Jiang Z P, Guo H J, Zeng Z Q, et al. Reconfiguring organosulfur cathode by over-lithiation to enable ultrathick lithium metal anode toward practical lithium-sulfur batteries[J]. ACS Nano, 2020, 14(10): 13784-13793. |
31 | Zhang R, Chen B, Shi C S, et al. Decreasing interfacial pitfalls with self-grown sheet-like Li2S artificial solid-electrolyte interphase for enhanced cycling performance of lithium metal anode[J]. Small, 2023, 19(27): e2208095. |
32 | Feng G X, Jia H, Shi Y P, et al. Imaging solid-electrolyte interphase dynamics using operando reflection interference microscopy[J]. Nature Nanotechnology, 2023, 18: 780-789. |
33 | Liu Y J, Tao X Y, Wang Y, et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries[J]. Science, 2022, 375(6582): 739-745. |
34 | Huang K, Song S P, Xue Z Y, et al. In-situ formation of LiF-rich solid-electrolyte interphases on 3D lithiophilic skeleton for stable lithium metal anode[J]. Energy Storage Materials, 2023, 55: 301-311. |
35 | Yu K C, Chen J B, Xie X T, et al. Constructing LiF-rich artificial SEI at a two-dimensional copper net current collector in anode-free lithium metal batteries[J]. Surfaces and Interfaces, 2022, 34: 102326. |
36 | Li Z D, Huai L Y, Li S, et al. Insight into bulk charge transfer of lithium metal anodes by synergism of nickel seeding and LiF-Li3N-Li2S co-doped interphase[J]. Energy Storage Materials, 2021, 37: 491-500. |
37 | Yang J, Hou J M, Fang Z X, et al. Simultaneously in situ fabrication of lithium fluoride and sulfide enriched artificial solid electrolyte interface facilitates high stable lithium metal anode[J]. Chemical Engineering Journal, 2022, 433: 133193. |
38 | Zhang D C, Liu Z B, Wu Y W, et al. In situ construction a stable protective layer in polymer electrolyte for ultralong lifespan solid-state lithium metal batteries[J]. Advanced Science, 2022, 9(12): e2104277. |
39 | Guan M R, Huang Y X, Meng Q Q, et al. Stabilization of lithium metal interfaces by constructing composite artificial solid electrolyte interface with mesoporous TiO2 and perfluoropolymers[J]. Small, 2022, 18(40): e2202981. |
40 | Vilá R A, Boyle D T, Dai A L, et al. LiH formation and its impact on Li batteries revealed by cryogenic electron microscopy[J]. Science Advances, 2023, 9(12): eadf3609. |
41 | Tan S, Kim J M, Corrao A, et al. Unravelling the convoluted and dynamic interphasial mechanisms on Li metal anodes[J]. Nature Nanotechnology, 2023, 18: 243-249. |
42 | Wu H P, Jia H, Wang C M, et al. Recent progress in understanding solid electrolyte interphase on lithium metal anodes[J]. Advanced Energy Materials, 2021, 11(5): 2003092. |
43 | Zhang S M, Yang G J, Liu S, et al. Understanding the dropping of lithium plating potential in carbonate electrolyte[J]. Nano Energy, 2020, 70: 104486. |
44 | Tian J X, Hu T P, Xu S Z, et al. Molecular dynamics simulations of the Li-ion diffusion in the amorphous solid electrolyte interphase[J]. Chinese Chemical Letters, 2023, 34(11): 108242. |
45 | Jin T, Chen J S, Chen X C, et al. Artificial interphase layers for Li metal anode, what's next?[J]. Next Energy, 2023, 1(3): 100040. |
46 | Gao S L, Li Z X, Zhang Z, et al. Constructing a multi-functional polymer network for ultra-stable and safe Li-metal batteries[J]. Energy Storage Materials, 2023, 55: 214-224. |
47 | Shen Z C, Cheng Y F, Sun S H, et al. The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+ transportation[J]. Carbon Energy, 2021, 3(3): 482-508. |
48 | Lin Y H, Shen Z C, Huang J Q, et al. In situ construction of fluorine-containing modified gel polymer electrolyte with high interfacial stability for high-rate lithium metal battery[J]. Journal of Power Sources, 2023, 584: 233612. |
49 | Sun S, Myeong S, Kim J, et al. Design of inorganic/organic bi-layered Li protection layer enabled dendrite-free practical Li metal battery[J]. Chemical Engineering Journal, 2022, 450: 137993. |
50 | Sun X R, Yang S H, Zhang T, et al. Regulating Li-ion flux with a high-dielectric hybrid artificial SEI for stable Li metal anodes[J]. Nanoscale, 2022, 14(13): 5033-5043. |
51 | Cao W Z, Lu J Z, Zhou K, et al. Organic-inorganic composite SEI for a stable Li metal anode by in situ polymerization[J]. Nano Energy, 2022, 95: 106983. |
52 | Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(8): L208. |
53 | Aurbach D, Markovsky B, Levi M D, et al. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries[J]. Journal of Power Sources, 1999, 81: 95-111. |
1 | Shen Z C, Zhong J W, Chen J H, et al. SiO2 nanofiber composite gel polymer electrolyte by in situ polymerization for stable Li metal batteries[J]. Chinese Chemical Letters, 2023, 34(3): 107370. |
2 | Lin Y H, Chen J H, Zhu J L, et al. In-situ construction of tetraethylene glycol diacrylate based gel polymer electrolyte for long lifespan lithium metal batteries[J]. Surfaces and Interfaces, 2023, 37: 102737. |
3 | Jagger B, Pasta M. Solid electrolyte interphases in lithium metal batteries[J]. Joule, 2023, 7(10): 2228-2244. |
4 | Shen Z C, Zhong J W, Jiang S Y, et al. Polyacrylonitrile porous membrane-based gel polymer electrolyte by in situ free-radical polymerization for stable Li metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(36): 41022-41036. |
54 | Zhou Y F, Su M, Yu X F, et al. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery[J]. Nature Nanotechnology, 2020, 15: 224-230. |
55 | Rikka V R, Sahu S R, Chatterjee A, et al. In situ/ex situ investigations on the formation of the mosaic solid electrolyte interface layer on graphite anode for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2018, 122(50): 28717-28726. |
56 | Li Y Z, Li Y B, Pei A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510. |
57 | Li Y Z, Huang W, Li Y B, et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy[J]. Joule, 2018, 2(10): 2167-2177. |
58 | Xu Y B, Wu H P, He Y, et al. Atomic to nanoscale origin of vinylene carbonate enhanced cycling stability of lithium metal anode revealed by cryo-transmission electron microscopy[J]. Nano Letters, 2020, 20(1): 418-425. |
59 | Li M H, Zhang Q, Yang X M, et al. Deciphering the mechanism of concentrated electrolyte for lithium metal anode via cryogenic electron microscopy[J]. Journal of Power Sources, 2023, 557: 232543. |
60 | Cheng D Y, Wynn T A, Wang X F, et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy[J]. Joule, 2020, 4(11): 2484-2500. |
61 | Han B, Li X Y, Bai S, et al. Conformal three-dimensional interphase of Li metal anode revealed by low-dose cryoelectron microscopy[J]. Matter, 2021, 4(11): 3741-3752. |
62 | Zhang E, Mecklenburg M, Yuan X T, et al. Expanding the cryogenic electron microscopy toolbox to reveal diverse classes of battery solid electrolyte interphase[J]. iScience, 2022, 25(12): 105689. |
63 | Wu L S, Hu J P, Chen S J, et al. Lithium nitrate mediated dynamic formation of solid electrolyte interphase revealed by in situ Fourier transform infrared spectroscopy[J]. Electrochimica Acta, 2023, 466: 142973. |
64 | Sun S Y, Yao N, Jin C B, et al. The crucial role of electrode potential of a working anode in dictating the structural evolution of solid electrolyte interphase[J]. Angewandte Chemie International Edition, 2022, 61(42): e202208743. |
65 | Weng S T, Zhang X, Yang G J, et al. Temperature-dependent interphase formation and Li+ transport in lithium metal batteries[J]. Nature Communications, 2023, 14: 4474. |
66 | Wang J Y, Huang W, Pei A, et al. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy[J]. Nature Energy, 2019, 4: 664-670. |
67 | Xu Y B, Wu H P, Jia H, et al. Current density regulated atomic to nanoscale process on Li deposition and solid electrolyte interphase revealed by cryogenic transmission electron microscopy[J]. ACS Nano, 2020, 14(7): 8766-8775. |
68 | Wang M S, Liang H M, Wang C Y, et al. Can we see SEI directly by naked eyes?[J]. Advanced Materials, 2023, 35(51): e2306683. |
69 | Chen Y Y, Chen Y X, Wang R, et al. Generation of a highly conductive and stable solid electrolyte interphase at lithium anode under additional electric filed[J]. Chemical Engineering Journal, 2022, 446: 137435. |
70 | Qu J L, Liu J J, Leng G R, et al. Overcoming the obstacles of lithium-metal anodes for high-energy batteries[J]. Electrochemistry Communications, 2023, 153: 107537. |
71 | Xu R, Cheng X B, Yan C, et al. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344. |
72 | Yu Z A, Cui Y, Bao Z N. Design principles of artificial solid electrolyte interphases for lithium-metal anodes[J]. Cell Reports Physical Science, 2020, 1: 100119. |
73 | Fu X X, Duan H H, Zhang S W, et al. Hexachloro-1, 3-butadiene as a functional additive for constructing an efficient solid electrolyte interface layer for long-life stable Li anodes[J]. ACS Applied Materials & Interfaces, 2022, 14(50): 55709-55718. |
74 | Oyakhire S T, Liao S L, Shuchi S B, et al. Proximity matters: interfacial solvation dictates solid electrolyte interphase composition[J]. Nano Letters, 2023, 23(16): 7524-7531. |
75 | Zhang S H, Zhuang X C, Du X F, et al. A novel potassium salt regulated solvation chemistry enabling excellent Li-anode protection in carbonate electrolytes[J]. Advanced Materials, 2023, 35(25): e2301312. |
76 | Fang W Q, Wen Z X, Chen L, et al. Constructing inorganic-rich solid electrolyte interphase via abundant anionic solvation sheath in commercial carbonate electrolytes[J]. Nano Energy, 2022, 104: 107881. |
77 | Li X, Liu J D, He J, et al. Separator-wetted, acid- and water-scavenged electrolyte with optimized Li-ion solvation to form dual efficient electrode electrolyte interphases via hexa-functional additive[J]. Advanced Science, 2022, 9(20): e2201297. |
78 | Li C, Liang Z Y, Li Z Z, et al. Self-assembly monolayer inspired stable artificial solid electrolyte interphase design for next-generation lithium metal batteries[J]. Nano Letters, 2023, 23(9): 4014-4022. |
79 | Cheng Y F, Wang Z J, Chen J B, et al. Catalytic chemistry derived artificial solid electrolyte interphase for stable lithium metal anodes working at 20 mA·cm-2 and 20 mAh·cm-2 [J]. Angewandte Chemie International Edition, 2023, 62(30): e202305723. |
80 | Cheng Z Z, Chen Y, Shi L, et al. Long-lifespan lithium metal batteries enabled by a hybrid artificial solid electrolyte interface layer[J]. ACS Applied Materials & Interfaces, 2023, 15(8): 10585-10592. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[4] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[5] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[6] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[7] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[8] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[9] | Zhen LONG, Jinhang WANG, Junjie REN, Yong HE, Xuebing ZHOU, Deqing LIANG. Experimental study on inhibition effect of natural gas hydrate formation by mixing ionic liquid with PVCap [J]. CIESC Journal, 2023, 74(6): 2639-2646. |
[10] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[11] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[12] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[13] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[14] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[15] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||