CIESC Journal ›› 2023, Vol. 74 ›› Issue (12): 4749-4763.DOI: 10.11949/0438-1157.20231074
• Reviews and monographs • Previous Articles Next Articles
Junjie ZHANG1(), Wang SUN1,2(), Xiaotian GAO1,2, Jinshuo QIAO1,2, Zhenhua WANG1,2, Kening SUN1,2()
Received:
2023-10-17
Revised:
2023-12-03
Online:
2024-02-19
Published:
2023-12-25
Contact:
Wang SUN, Kening SUN
张俊杰1(), 孙旺1,2(), 高啸天1,2, 乔金硕1,2, 王振华1,2, 孙克宁1,2()
通讯作者:
孙旺,孙克宁
作者简介:
张俊杰(1999—),男,硕士研究生,15801337258@163.com
基金资助:
CLC Number:
Junjie ZHANG, Wang SUN, Xiaotian GAO, Jinshuo QIAO, Zhenhua WANG, Kening SUN. Key technology and industrialization progress of hydrogen production by solid oxide electrolytic cell[J]. CIESC Journal, 2023, 74(12): 4749-4763.
张俊杰, 孙旺, 高啸天, 乔金硕, 王振华, 孙克宁. 固体氧化物电解池制氢关键技术及产业化进展[J]. 化工学报, 2023, 74(12): 4749-4763.
电解技术 | 优势 | 劣势 |
---|---|---|
AEC | 技术成熟;成本低;稳定性高 | 电流密度低;高浓度碱液 |
PEMEC | 电流密度大;响应速度快;功率密度高;产品气体纯度高 | 成本高;使用贵金属催化剂 |
SOEC | 工作温度高;效率高;材料成本低 | 稳定性一般;技术成熟度低 |
Table 1 Advantages and disadvantages of typical water electrolysis technologies
电解技术 | 优势 | 劣势 |
---|---|---|
AEC | 技术成熟;成本低;稳定性高 | 电流密度低;高浓度碱液 |
PEMEC | 电流密度大;响应速度快;功率密度高;产品气体纯度高 | 成本高;使用贵金属催化剂 |
SOEC | 工作温度高;效率高;材料成本低 | 稳定性一般;技术成熟度低 |
组件 | 典型材料 | 类型 | 优势 | 问题 |
---|---|---|---|---|
氧电极 | LSM | 钙钛矿 | 与YSZ化学相容性好,催化活性高, 化学稳定性好 | 离子电导率低 |
LSC | 钙钛矿 | 电导率高 | Co热膨胀系数高,长期运行稳定 性差 | |
LSCF | 钙钛矿 | 电化学活性高,极化电阻低,稳定性好 | Co热膨胀系数高,与YSZ相容性差 | |
LnBCO (Ln=La, Pr,Nd,Sm,Gd, Y) | 双钙钛矿 | 电子-离子混合导电材料,电导率高, 催化活性好 | — | |
La2NiO4 | R-P型钙钛矿 | 氧扩散系数高,具有与电解质匹配的 热膨胀系数 | 中温区的电子导电性较低 | |
氢电极 | Ni-YSZ | 金属陶瓷 | 催化活性高、价格低 | Ni的团聚、氧化 |
SFM | 钙钛矿 | 氧化还原稳定性优异 | 导电性差,催化活性低 | |
电解质 | YSZ | 锆基氧离子导体 | 优异的离子导电性和力学性能 | 离子电导率会随温度的降低而 大幅减小 |
GDC | 铈基氧离子导体 | 中低温离子导电性好 | 高温下Ce4+会发生副反应 | |
连接体 | Crofer 22 APU | 高铬不锈钢 | 抗氧化性好,热膨胀系数匹配,成本较低 | — |
密封材料 | 玻璃陶瓷密封材料 | 化学稳定性好,成本低 | 热循环性能差 |
Table 2 Typical materials for each component of SOEC
组件 | 典型材料 | 类型 | 优势 | 问题 |
---|---|---|---|---|
氧电极 | LSM | 钙钛矿 | 与YSZ化学相容性好,催化活性高, 化学稳定性好 | 离子电导率低 |
LSC | 钙钛矿 | 电导率高 | Co热膨胀系数高,长期运行稳定 性差 | |
LSCF | 钙钛矿 | 电化学活性高,极化电阻低,稳定性好 | Co热膨胀系数高,与YSZ相容性差 | |
LnBCO (Ln=La, Pr,Nd,Sm,Gd, Y) | 双钙钛矿 | 电子-离子混合导电材料,电导率高, 催化活性好 | — | |
La2NiO4 | R-P型钙钛矿 | 氧扩散系数高,具有与电解质匹配的 热膨胀系数 | 中温区的电子导电性较低 | |
氢电极 | Ni-YSZ | 金属陶瓷 | 催化活性高、价格低 | Ni的团聚、氧化 |
SFM | 钙钛矿 | 氧化还原稳定性优异 | 导电性差,催化活性低 | |
电解质 | YSZ | 锆基氧离子导体 | 优异的离子导电性和力学性能 | 离子电导率会随温度的降低而 大幅减小 |
GDC | 铈基氧离子导体 | 中低温离子导电性好 | 高温下Ce4+会发生副反应 | |
连接体 | Crofer 22 APU | 高铬不锈钢 | 抗氧化性好,热膨胀系数匹配,成本较低 | — |
密封材料 | 玻璃陶瓷密封材料 | 化学稳定性好,成本低 | 热循环性能差 |
1 | Dolle C, Neha N, Coutanceau C. Electrochemical hydrogen production from biomass[J]. Current Opinion in Electrochemistry, 2022, 31: 100841. |
2 | Buttler A, Spliethoff H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454. |
3 | Gambou F, Guilbert D, Zasadzinski M, et al. A comprehensive survey of alkaline electrolyzer modeling: electrical domain and specific electrolyte conductivity[J]. Energies, 2022, 15(9): 3452. |
4 | Krishnan S, Koning V, Theodorus de Groot M, et al. Present and future cost of alkaline and PEM electrolyser stacks[J]. International Journal of Hydrogen Energy, 2023, 48(83): 32313-32330. |
5 | Jang D, Cho H S, Lee S, et al. Investigation of the operation characteristics and optimization of an alkaline water electrolysis system at high temperature and a high current density[J]. Journal of Cleaner Production, 2023, 424: 138862. |
6 | Nuttall L J, Fickett A P, Titterington W A. Hydrogen generation by solid polymer electrolyte water electrolysis[M]//Veziroğlu T N. Hydrogen Energy. Boston, MA: Springer, 1975: 441-455. |
7 | Norazahar N, Khan F, Rahmani N, et al. Degradation modelling and reliability analysis of PEM electrolyzer[J]. International Journal of Hydrogen Energy, 2023, 50: 842-856. |
8 | Shiva Kumar S, Lim H. An overview of water electrolysis technologies for green hydrogen production[J]. Energy Reports, 2022, 8: 13793-13813. |
9 | Baroutaji A, Arjunan A, Robinson J, et al. Additive manufacturing for proton exchange membrane (PEM) hydrogen technologies: merits, challenges, and prospects[J]. International Journal of Hydrogen Energy, 2023, 52: 561-584. |
10 | Carmo M, Fritz D L, Mergel J, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38(12): 4901-4934. |
11 | Majumdar A, Haas M, Elliot I, et al. Control and control-oriented modeling of PEM water electrolyzers: a review[J]. International Journal of Hydrogen Energy, 2023, 48(79): 30621-30641. |
12 | Hauch A, Küngas R, Blennow P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513): eaba6118. |
13 | Shen F Y, Wang R F, Tucker M C. Long term durability test and post mortem for metal-supported solid oxide electrolysis cells[J]. Journal of Power Sources, 2020, 474: 228618. |
14 | Nechache A, Hody S. Alternative and innovative solid oxide electrolysis cell materials: a short review[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111322. |
15 | Choe C, Cheon S, Gu J, et al. Critical aspect of renewable syngas production for power-to-fuel via solid oxide electrolysis: integrative assessment for potential renewable energy source[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112398. |
16 | Khan M A, Zhao H B, Zou W W, et al. Recent progresses in electrocatalysts for water electrolysis[J]. Electrochemical Energy Reviews, 2018, 1(4): 483-530. |
17 | Xu Y H, Cai S S, Chi B, et al. Technological limitations and recent developments in a solid oxide electrolyzer cell: a review[J]. International Journal of Hydrogen Energy, 2023, 50: 548-591. |
18 | Shiva Kumar S, Himabindu V. Hydrogen production by PEM water electrolysis — a review[J]. Materials Science for Energy Technologies, 2019, 2(3): 442-454. |
19 | Rashid M M, Al Mesfer M K, Naseem H, et al. Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis[J]. International Journal of Engineering and Advanced Technology, 2015, 4(3): 80-93. |
20 | Singh K, Kannan R, Thangadurai V. Perspective of perovskite-type oxides for proton conducting solid oxide fuel cells[J]. Solid State Ionics, 2019, 339: 114951. |
21 | Shen M H, Ai F J, Ma H L, et al. Progress and prospects of reversible solid oxide fuel cell materials[J]. iScience, 2021, 24(12): 103464. |
22 | Adler S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes[J]. Chemical Reviews, 2004, 104(10): 4791-4843. |
23 | 杨晓幸, 苗鹤, 袁金良. 可逆固体氧化物燃料电池氧电极材料的研究进展[J]. 化工进展, 2021, 40(9): 4904-4917. |
Yang X X, Miao H, Yuan J L. Research progress on oxygen electrode materials for reversible solid oxide fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4904-4917. | |
24 | Petrov A N, Kononchuk O F, Andreev A V, et al. Crystal structure, electrical and magnetic properties of La1 - x Sr x CoO3 - y [J]. Solid State Ionics, 1995, 80(3/4): 189-199. |
25 | Sharma V I, Yildiz B. Degradation mechanism in La0.8Sr0.2CoO3 as contact layer on the solid oxide electrolysis cell anode[J]. Journal of the Electrochemical Society, 2010, 157(3): B441. |
26 | Tietz F, Sebold D, Brisse A, et al. Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation[J]. Journal of Power Sources, 2013, 223: 129-135. |
27 | Tian Y F, Li J, Liu Y Y, et al. Preparation and properties of PrBa0.5Sr0.5Co1.5Fe0.5O5+ δ as novel oxygen electrode for reversible solid oxide electrochemical cell[J]. International Journal of Hydrogen Energy, 2018, 43(28): 12603-12609. |
28 | Wang Y, Li W Y, Ma L, et al. Degradation of solid oxide electrolysis cells: phenomena, mechanisms, and emerging mitigation strategies—a review[J]. Journal of Materials Science & Technology, 2020, 55: 35-55. |
29 | Park J H, Kim K J, Jung C H, et al. Boosting the performance of solid oxide electrolysis cells via incorporation of Gd3+ and Nd3+ double-doped ceria[J]. Fuel Cells, 2020, 20(6): 712-717. |
30 | Zheng J E, Wang X Y, Yu J, et al. Enhanced performance of a Ba0.5Sr0.5Co0.8Fe0.2O3– δ based oxygen electrode for solid oxide electrolysis cells by decorating with Ag particles[J]. Materials Research Express, 2021, 8(3): 035502. |
31 | Tan Y, Wang A, Jia L C, et al. High-performance oxygen electrode for reversible solid oxide cells with power generation and hydrogen production at intermediate temperature[J]. International Journal of Hydrogen Energy, 2017, 42(7): 4456-4464. |
32 | 勾匀婕, 李广东, 王振华, 等. 固体氧化物电解池技术的应用前景与挑战[J]. 石油化工高等学校学报, 2022, 35(6): 28-37. |
Gou Y J, Li G D, Wang Z H, et al. Application prospect and challenge of solid oxide electrolytic cell technology[J]. Journal of Petrochemical Universities, 2022, 35(6): 28-37. | |
33 | Jiang S P, Chan S H. A review of anode materials development in solid oxide fuel cells[J]. Journal of Materials Science, 2004, 39(14): 4405-4439. |
34 | Nakajo A, Cocco A P, DeGostin M B, et al. Evolution of 3-D transport pathways and triple-phase boundaries in the Ni-YSZ hydrogen electrode upon fuel cell or electrolysis cell operation[J]. ECS Transactions, 2017, 78(1): 3205-3215. |
35 | Tsekouras G, Irvine J T S. The role of defect chemistry in strontium titanates utilised for high temperature steam electrolysis[J]. Journal of Materials Chemistry, 2011, 21(25): 9367-9376. |
36 | Jin C, Yang C H, Zhao F, et al. La0.75Sr0.25Cr0.5Mn0.5O3 as hydrogen electrode for solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2011, 36(5): 3340-3346. |
37 | Liu S B, Liu Q X, Luo J L. The excellence of La(Sr)Fe(Ni)O3 as an active and efficient cathode for direct CO2 electrochemical reduction at elevated temperatures[J]. Journal of Materials Chemistry A, 2017, 5(6): 2673-2680. |
38 | Hosoi K, Hagiwara H, Ida S, et al. La0.8Sr0.2FeO3– δ as fuel electrode for solid oxide reversible cells using LaGaO3-based oxide electrolyte[J]. The Journal of Physical Chemistry C, 2016, 120(29): 16110-16117. |
39 | Zhang L J, Wang Z H, Cao Z Q, et al. High activity oxide Pr0.3Sr0.7Ti0.3Fe0.7O3- δ as cathode of SOEC for direct high-temperature steam electrolysis[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12104-12110. |
40 | Deka D J, Gunduz S, Kim J, et al. Hydrogen production from water in a solid oxide electrolysis cell: effect of Ni doping on lanthanum strontium ferrite perovskite cathodes[J]. Industrial & Engineering Chemistry Research, 2019, 58(50): 22497-22505. |
41 | Xu Y H, Huang L W, Zhang Y K, et al. Enhanced steam electrolysis with exsolved iron nanoparticles in perovskite cathode[J]. International Journal of Hydrogen Energy, 2022, 47(58): 24287-24296. |
42 | Lee J G, Jeon O S, Ryu K H, et al. Effects of 8 mol% yttria-stabilized zirconia with copper oxide on solid oxide fuel cell performance[J]. Ceramics International, 2015, 41(6): 7982-7988. |
43 | Colomer M T, Guglieri C, Díaz-Moreno S, et al. Effect of titania doping and sintering temperature on titanium local environment and electrical conductivity of YSZ[J]. Journal of Alloys and Compounds, 2016, 689: 512-524. |
44 | Li H, Kon A, Chang C H, et al. Fast firing of bismuth doped yttria-stabilized zirconia for enhanced densification and ionic conductivity[J]. Journal of the Ceramic Society of Japan, 2016, 124(4): 370-374. |
45 | Kim J, Jun A, Gwon O, et al. Hybrid-solid oxide electrolysis cell: a new strategy for efficient hydrogen production[J]. Nano Energy, 2018, 44: 121-126. |
46 | Zhu S Y, Wang Y L, Rao Y Y, et al. Chemically-induced mechanical unstability of samaria-doped ceria electrolyte for solid oxide electrolysis cells[J]. International Journal of Hydrogen Energy, 2014, 39(24): 12440-12447. |
47 | Nolan M. Formation of Ce3+ at the cerium dioxide (1 1 0) surface by doping[J]. Chemical Physics Letters, 2010, 492(1/2/3): 115-118. |
48 | Sala E M, Mazzanti N, Mogensen M B, et al. Current understanding of ceria surfaces for CO2 reduction in SOECs and future prospects — a review[J]. Solid State Ionics, 2022, 375: 115833. |
49 | Li M M, Hou J, Fan Y, et al. Interface modification of Ru-CeO2 co-infiltrated SFM electrode and construction of SDC/YSZ bilayer electrolyte for direct CO2 electrolysis[J]. Electrochimica Acta, 2022, 426: 140771. |
50 | Preininger M, Stoeckl B, Subotić V, et al. Characterization and performance study of commercially available solid oxide cell stacks for an autonomous system[J]. Energy Conversion and Management, 2020, 203: 112215. |
51 | Falk-Windisch H, Claquesin J, Sattari M, et al. Co- and Ce/Co-coated ferritic stainless steel as interconnect material for intermediate temperature solid oxide fuel cells[J]. Journal of Power Sources, 2017, 343: 1-10. |
52 | Talic B, Molin S, Wiik K, et al. Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects[J]. Journal of Power Sources, 2017, 372: 145-156. |
53 | Frangini S, Della Seta L, Paoletti C. Effect of additive particle size on the CuO-accelerated formation of LaFeO3 perovskite conversion coatings in molten carbonate baths[J]. Surface and Coatings Technology, 2019, 374: 513-520. |
54 | Tulyaganov D U, Reddy A A, Kharton V V, et al. Aluminosilicate-based sealants for SOFCs and other electrochemical applications — a brief review[J]. Journal of Power Sources, 2013, 242: 486-502. |
55 | Wang S F, Lu H C, Liu Y X, et al. Characteristics of glass sealants for intermediate-temperature solid oxide fuel cell applications[J]. Ceramics International, 2017, 43: S613-S620. |
56 | Rodríguez-López S, Wei J, Laurenti K C, et al. Mechanical properties of solid oxide fuel cell glass-ceramic sealants in the system BaO/SrO-MgO-B2O3-SiO2 [J]. Journal of the European Ceramic Society, 2017, 37(11): 3579-3594. |
57 | 郭祥, 乔金硕, 王振华, 等. 碳燃料固体氧化物燃料电池结构研究进展[J]. 化工学报, 2023, 74(1): 290-302. |
Guo X, Qiao J S, Wang Z H, et al. Progress of structure for carbon-fueled solid oxide fuel cells[J]. CIESC Journal, 2023, 74(1): 290-302. | |
58 | Yao Y, Ma Y, Wang C P, et al. A cofuel channel microtubular solid oxide fuel/electrolysis cell[J]. Applied Energy, 2022, 327: 120010. |
59 | Wang B, Li T, Xiao R, et al. Study on the 4-channel micro-monolithic design with geometry control for reversible solid oxide cell[J]. Separation and Purification Technology, 2023, 315: 123732. |
60 | Zhang Z, Guan C Z, Xie L D, et al. Design and analysis of a novel opposite trapezoidal flow channel for solid oxide electrolysis cell stack[J]. Energies, 2022, 16(1): 159. |
61 | Peters R, Frank M, Tiedemann W, et al. Long-term experience with a 5/15 kW-class reversible solid oxide cell system[J]. Journal of the Electrochemical Society, 2021, 168(1): 014508. |
62 | Choi Y, Byun S, Seo D W, et al. New design and performance evaluation of 1 kW-class reversible solid oxide electrolysis-fuel cell stack using flat-tubular cells[J]. Journal of Power Sources, 2022, 542: 231744. |
63 | Kotisaari M, Thomann O, Montinaro D, et al. Evaluation of a SOE stack for hydrogen and syngas production: a performance and durability analysis[J]. Fuel Cells, 2017, 17(4): 571-580. |
64 | Aicart J, Wuillemin Z, Gervasoni B, et al. Performance evaluation of a 4-stack solid oxide module in electrolysis mode[J]. International Journal of Hydrogen Energy, 2022, 47(6): 3568-3579. |
65 | Skafte T L, Rizvandi O B, Smitshuysen A L, et al. Electrothermally balanced operation of solid oxide electrolysis cells[J]. Journal of Power Sources, 2022, 523: 231040. |
66 | Sun Y, Hu X F, Gao J, et al. Solid oxide electrolysis cell under real fluctuating power supply with a focus on thermal stress analysis[J]. Energy, 2022, 261: 125096. |
67 | Hauch A, Traulsen M L, Küngas R, et al. CO2 electrolysis — gas impurities and electrode overpotential causing detrimental carbon deposition[J]. Journal of Power Sources, 2021, 506: 230108. |
68 | Lu B W, Zhang Z J, Zhang Z, et al. Control strategy of solid oxide electrolysis cell operating temperature under real fluctuating renewable power[J]. Energy Conversion and Management, 2024, 299: 117852. |
69 | Cui T C, Xiao G P, Yan H J, et al. Numerical simulation and analysis of the thermal stresses of a planar solid oxide electrolysis cell[J]. International Journal of Green Energy, 2023, 20(4): 432-444. |
70 | Reytier M, Cren J, Petitjean M, et al. Development of a cost-efficient and performing high temperature steam electrolysis stack[J]. ECS Transactions, 2013, 57(1): 3151-3160. |
71 | Chatroux A, Reytier M, Di Iorio S, et al. A packaged and efficient SOEC system demonstrator[J]. ECS Transactions, 2015, 68(1): 3519-3526. |
72 | Reytier M, Di Iorio S, Chatroux A, et al. Stack performances in high temperature steam electrolysis and co-electrolysis[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11370-11377. |
73 | Saarinen V, Pennanen J, Kotisaari M, et al. Design, manufacturing, and operation of movable 2 × 10 kW size rSOC system[J]. Fuel Cells, 2021, 21(5): 477-487. |
74 | Posdziech O, Schwarze K, Brabandt J. Efficient hydrogen production for industry and electricity storage via high-temperature electrolysis[J]. International Journal of Hydrogen Energy, 2019, 44(35): 19089-19101. |
75 | Mermelstein J, Posdziech O. Development and demonstration of a novel reversible SOFC system for utility and micro grid energy storage[J]. Fuel Cells, 2017, 17(4): 562-570. |
76 | Bi L, Boulfrad S, Traversa E. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides[J]. Chemical Society Reviews, 2014, 43(24): 8255-8270. |
77 | Schwarze K, Posdziech O, Kroop S, et al. Green industrial hydrogen via reversible high-temperature electrolysis[J]. ECS Transactions, 2017, 78(1): 2943-2952. |
78 | Schwarze K, Posdziech O, Mermelstein J, et al. Operational results of an 150/30 kW RSOC system in an industrial environment[J]. Fuel Cells, 2019, 19(4): 374-380. |
79 | Posdziech O, Geißler T, Schwarze K, et al. System development and demonstration of large-scale high-temperature electrolysis[J]. ECS Transactions, 2019, 91(1): 2537-2546. |
80 | Patcharavorachot Y, Chatrattanawet N, Arpornwichanop A, et al. Comparative energy, economic, and environmental analyses of power-to-gas systems integrating SOECs in steam-electrolysis and co-electrolysis and methanation[J]. Thermal Science and Engineering Progress, 2023, 42: 101873. |
81 | Küngas R, Blennow P, Heiredal-Clausen T, et al. eCOs — a commercial CO2 electrolysis system developed by haldor topsoe[J]. ECS Transactions, 2017, 78(1): 2879-2884. |
82 | Lehtinen T, Noponen M. Solid oxide electrolyser demonstrator development at elcogen[J]. ECS Transactions, 2021, 103(1): 1939-1944. |
83 | Sunfire. Renewable hydrogen project “multiplhy”: world's largest high-temperature electrolyzer from sunfire successfully installed [EB/OL]. (2023-04-11)[2023-06-04]. . |
84 | Lin M, Haussener S. An integrated concentrated solar fuel generator utilizing a tubular solid oxide electrolysis cell as solar absorber[J]. Journal of Power Sources, 2018, 400: 592-604. |
85 | Houaijia A, Breuer S, Thomey D, et al. Solar hydrogen by high-temperature electrolysis: flowsheeting and experimental analysis of a tube-type receiver concept for superheated steam production[J]. Energy Procedia, 2014, 49: 1960-1969. |
86 | Schiller G, Lang M, Szabo P, et al. Solar heat integrated solid oxide steam electrolysis for highly efficient hydrogen production[J]. Journal of Power Sources, 2019, 416: 72-78. |
87 | Zhang Q Q, Chang Z S, Fu M K, et al. Thermal performance analysis of an integrated solar reactor using solid oxide electrolysis cells (SOEC) for hydrogen production[J]. Energy Conversion and Management, 2022, 264: 115762. |
88 | Zhang Q Q, Chang Z S, Fu M K, et al. Thermal and electrochemical performance analysis of an integrated solar SOEC reactor for hydrogen production[J]. Applied Thermal Engineering, 2023, 229: 120603. |
89 | Nechache A, Hody S. Test and evaluation of an hybrid storage solution for buildings, based on a reversible high-temperature electrolyzer[J]. ECS Transactions, 2019, 91(1): 2485-2494. |
90 | Lamagna M, Nastasi B, Groppi D, et al. Techno-economic assessment of reversible solid oxide cell integration to renewable energy systems at building and district scale[J]. Energy Conversion and Management, 2021, 235: 113993. |
91 | Tallgren J, Himanen O, Noponen M. Experimental characterization of low temperature solid oxide cell stack[J]. ECS Transactions, 2017, 78(1): 3103-3111. |
[1] | Yifan JIANG, Lei LIU, Yao ZHAO, Yanjun DAI. Research on the performance of liquid cooling system for UVLED optical components [J]. CIESC Journal, 2023, 74(S1): 154-160. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[4] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[5] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[6] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[7] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[8] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[9] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[10] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[11] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[12] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[13] | Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria [J]. CIESC Journal, 2023, 74(6): 2655-2667. |
[14] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[15] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 780
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 964
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||