CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1284-1301.DOI: 10.11949/0438-1157.20231277
• Reviews and monographs • Previous Articles Next Articles
Tianyi LI(), Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO()
Received:
2023-12-04
Revised:
2024-03-20
Online:
2024-06-06
Published:
2024-04-25
Contact:
Guangping HAO
李添翼(), 武玉泰, 王永胜, 顾佳锐, 宋沂恒, 杨丰铖, 郝广平()
通讯作者:
郝广平
作者简介:
李添翼(1998—),男,博士研究生,tianyili@mail.dlut.edu.cn
基金资助:
CLC Number:
Tianyi LI, Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO. Advances in light isotopes separation and catalytic labeling[J]. CIESC Journal, 2024, 75(4): 1284-1301.
李添翼, 武玉泰, 王永胜, 顾佳锐, 宋沂恒, 杨丰铖, 郝广平. 轻同位素分离纯化与催化标记研究进展[J]. 化工学报, 2024, 75(4): 1284-1301.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 (a) Transport diffusivity of H2 and D2 under different temperature (insets show the one α cage of RHO zeolite and the 8-ring window of RHO zeolites connecting two cages)[14]; (b) Schematic representation for the different effective size of H2 and D2 under quantum effect[17]
Fig.2 (a) Comparison of the D2/H2 molar ratio as function of the effective pore size of organic frameworks over a temperature range[20]; (b) Schematic view of D2 separation in 1D channel of MIL-53 (Al) during the breathing propagation[25]; (c) H2 and D2 isotherms for DUT-8(Ni) at 20.3 and 23.3 K[27]; (d) 3D rendering of the same slice filled with nonoverlapping spheres (the spheres are colored by diameter, with the values indicated in the color bar); (e) Pore geometry-dependent selectivity of 18O2/16O2 at 112 K[30]
Fig.3 (a) TDS spectra of CPO-27-Co for pure gas H2 (open black circle) and D2 (filled red circle); (b) Selectivities of D2/H2 for CPO-27-Co at the temperature range of 19.5—70 K and pressure range of 0—1 bar[35]; (c) TDS spectra of Cu(Ⅰ)-ZSM-5 for pure gas H2 and D2; (d) Selectivities of D2/H2 for Cu(Ⅰ)-ZSM-5 at the temperature range of 23—273 K[37]
Fig.4 (a) Illustration of the CAQS and KQS sites in MOF-74-IMs; (b) Selectivity of MOF-74-ac and MOF-74-IMs as a function of exposure temperature[39]; (c) Illustration of selective proton pumping through a graphene sandwich membrane-electrode assembly[43]; (d) Examples of I-V characteristics for H+/D+ transport through monolayers of hBN[42]
Fig.6 General mechanistic pathway for the deuterium labeling of N-heterocyclic compounds using Ru NPs with dimetallacylic intermediates (a) and with monometallacy intermediates (b)[61]
Fig.7 (a) Comparison of the deuterium labeling performance for formyl group in various aldehydes using Ru/C and NHC-modified Ru/C catalysts [63]; (b) Possible mechanistic pathways for the catalytic HIE using carbon-supported iron[64]; (c) Schematic illustration of the H/D exchange and reaction of cis-alkene with active H atoms on block metal surface or with hydride and proton derive from the heterolytic dissociation of H2 on atomically dispersed metal catalysts[65]; (d) Possible reaction pathways for the deuteration of aniline in a Pt/CeO2-D2O system without H2[69]
Fig.8 (a) Mechanistic proposal of the controllable isotope-labeled N-methylation of amines by the synergistic utilization of electrons and holes on a semiconductor photocatalyst[80]; (b) Porous CdSe photocatalyst catalyzes the radical pathway for C—X to C—D transformation[83]; (c) Mechanism of dehalogenation deuteration reaction of Cu nanowires array electrocatalysts[85]; (d) Schematic diagram of the deuteration reaction steps for the palladium membrane reactor[93]
1 | Dayie T K, Olenginski L T, Taiwo K M. Isotope labels combined with solution NMR spectroscopy make visible the invisible conformations of small-to-large RNAs[J]. Chemical Reviews, 2022, 122(10): 9357-9394. |
2 | Schellekens R C A, Stellaard F, Woerdenbag H J, et al. Applications of stable isotopes in clinical pharmacology[J]. British Journal of Clinical Pharmacology, 2011, 72(6): 879-897. |
3 | Ametamey S M, Honer M, Schubiger P A. Molecular imaging with PET[J]. Chemical Reviews, 2008, 108(5): 1501-1516. |
4 | Prokhorov I, Kluge T, Janssen C. Laser absorption spectroscopy of rare and doubly substituted carbon dioxide isotopologues[J]. Analytical Chemistry, 2019, 91(24): 15491-15499. |
5 | Douglas P M J, Stolper D A, Eiler J M, et al. Methane clumped isotopes: progress and potential for a new isotopic tracer[J]. Organic Geochemistry, 2017, 113: 262-282. |
6 | Stolper D A, Martini A M, Clog M, et al. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues[J]. Geochimica et Cosmochimica Acta, 2015, 161: 219-247. |
7 | Saud S, Fahad S, Cui G W, et al. Determining nitrogen isotopes discrimination under drought stress on enzymatic activities, nitrogen isotope abundance and water contents of Kentucky bluegrass[J]. Scientific Reports, 2020, 10(1): 6415. |
8 | 孙颖, 王和义, 桑革, 等. 反应堆含氚重水提氚关键技术研究进展[J]. 中国工程科学, 2007, 9(5): 1-6. |
Sun Y, Wang H Y, Sang G, et al. Progress in studies on the key technology of tritium extraction from reactor tritiated heavy water[J]. Engineering Science, 2007, 9(5): 1-6. | |
9 | 李虎林. 碳、氮、氧稳定同位素生产技术现状及发展趋势[J]. 同位素, 2011, 24(S1): 7-14. |
Li H L. Production technology status and development trend of stable isotopes C, N and O[J]. Journal of Isotopes, 2011, 24(S1): 7-14. | |
10 | Igarashi T, Kambe T, Kihara H. Industrial separation of oxygen isotopes by oxygen distillation[J]. Journal of Labelled Compounds & Radiopharmaceuticals, 2019, 62(12): 865-869. |
11 | Oziashvili E D, Egiazarov A S. The separation of stable isotopes of carbon[J]. Russian Chemical Reviews, 1989, 58(4): 325-336. |
12 | Malo M, Valle F J, Jiménez F M, et al. Hisotope thermo-diffusion in structural materials[J]. Fusion Engineering and Design, 2017, 124: 924-927. |
13 | Park J Y, Adhikary A, Moon H R. Progress in the development of flexible metal-organic frameworks for hydrogen storage and selective separation of its isotopes[J]. Coordination Chemistry Reviews, 2023, 497(15): 215402. |
14 | Anil Kumar A V, Bhatia S K. Quantum effect induced reverse kinetic molecular sieving in microporous materials[J]. Physical Review Letters, 2005, 95(24): 245901. |
15 | Hathorn B, Sumpter B, Noid D. Contribution of restricted rotors to quantum sieving of hydrogen isotopes[J]. Physical Review A, 2001, 64(2): 022903. |
16 | Kidambi P R, Chaturvedi P, Moehring N K. Subatomic species transport through atomically thin membranes: present and future applications[J]. Science, 2021, 374(6568): eabd7687. |
17 | Kim J Y, Oh H, Moon H R. Hydrogen isotope separation in confined nanospaces: carbons, zeolites, metal-organic frameworks, and covalent organic frameworks[J]. Advanced Materials, 2019, 31(20): e1805293. |
18 | Kopf S, Bourriquen F, Li W, et al. Recent developments for the deuterium and tritium labeling of organic molecules[J]. Chemical Reviews, 2022, 122(6): 6634-6718. |
19 | Beenakker J J M, Borman V D, Krylov S Y. Molecular transport in subnanometer pores: zero-point energy, reduced dimensionality and quantum sieving[J]. Chemical Physics Letters, 1995, 232(4): 379-382. |
20 | Oh H, Park K S, Kalidindi S B, et al. Quantum cryo-sieving for hydrogen isotope separation in microporous frameworks: an experimental study on the correlation between effective quantum sieving and pore size[J]. Journal of Materials Chemistry A, 2013, 1(10): 3244-3248. |
21 | Xing Y L, Cai J J, Li L J, et al. An exceptional kinetic quantum sieving separation effect of hydrogen isotopes on commercially available carbon molecular sieves[J]. Physical Chemistry Chemical Physics, 2014, 16(30): 15800-15805. |
22 | Liu M, Zhang L D, Little M A, et al. Barely porous organic cages for hydrogen isotope separation[J]. Science, 2019, 366(6465): 613-620. |
23 | Si Y N, He X, Jiang J, et al. Highly effective H2/D2 separation in a stable Cu-based metal-organic framework[J]. Nano Research, 2021, 14(2): 518-525. |
24 | Yan Q Q, Wang J, Zhang L D, et al. A squarate-pillared titanium oxide quantum sieve towards practical hydrogen isotope separation[J]. Nature Communications, 2023, 14(1): 4189. |
25 | Kim J Y, Zhang L D, Balderas-Xicohténcatl R, et al. Selective hydrogen isotope separation via breathing transition in MIL-53(Al)[J]. Journal of the American Chemical Society, 2017, 139(49): 17743-17746. |
26 | Jung M, Park J, Muhammad R, et al. Elucidation of diffusivity of hydrogen isotopes in flexible MOFs by quasi-elastic neutron scattering[J]. Advanced Materials, 2021, 33(20): e2007412. |
27 | Bondorf L, Fiorio J L, Bon V, et al. Isotope-selective pore opening in a flexible metal-organic framework[J]. Science Advances, 2022, 8(15): eabn7035. |
28 | Zhang L D, Jee S, Park J, et al. Exploiting dynamic opening of apertures in a partially fluorinated MOF for enhancing H2 desorption temperature and isotope separation[J]. Journal of the American Chemical Society, 2019, 141(50): 19850-19858. |
29 | Garberoglio G, Johnson J K. Hydrogen isotope separation in carbon nanotubes: calculation of coupled rotational and translational states at high densities[J]. ACS Nano, 2010, 4(3): 1703-1715. |
30 | Ujjain S K, Bagusetty A, Matsuda Y, et al. Adsorption separation of heavier isotope gases in subnanometer carbon pores[J]. Nature Communications, 2021, 12(1): 546. |
31 | Wulf T, Heine T. Toward separation of hydrogen isotopologues by exploiting zero-point energy difference at strongly attractive adsorption site models[J]. International Journal of Quantum Chemistry, 2018, 118(9): e25545. |
32 | So S H, Oh H. A mini-review of the current progress and future challenges of zeolites for hydrogen isotopes separation through a quantum effect[J]. International Journal of Hydrogen Energy, 2024, 50: 539-560. |
33 | 李沐紫, 贾国伟, 赵砚珑, 等. 金属有机框架材料对非二氧化碳温室气体捕捉研究进展[J]. 化工学报, 2023, 74(1): 365-379. |
Li M Z, Jia G W, Zhao Y L, et al. The progress of metal-organic frameworks for non-CO2 greenhouse gases capture[J]. CIESC Journal, 2023, 74(1): 365-379. | |
34 | FitzGerald S A, Pierce C J, Rowsell J L C, et al. Highly selective quantum sieving of D2 from H2 by a metal-organic framework as determined by gas manometry and infrared spectroscopy[J]. Journal of the American Chemical Society, 2013, 135(25): 9458-9464. |
35 | Oh H, Savchenko I, Mavrandonakis A, et al. Highly effective hydrogen isotope separation in nanoporous metal-organic frameworks with open metal sites: direct measurement and theoretical analysis[J]. ACS Nano, 2014, 8(1): 761-770. |
36 | Weinrauch I, Savchenko I, Denysenko D, et al. Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(Ⅰ) sites[J]. Nature Communications, 2017, 8: 14496. |
37 | Xiong R, Zhang L, Li P, et al. Highly effective hydrogen isotope separation through dihydrogen bond on Cu(Ⅰ)-exchanged zeolites well above liquid nitrogen temperature[J]. Chemical Engineering Journal, 2020, 391: 123485. |
38 | Giraudet M, Bezverkhyy I, Weber G, et al. D2/H2 adsorption selectivity on FAU zeolites at 77.4 K: influence of Si/Al ratio and cationic composition[J]. Microporous and Mesoporous Materials, 2018, 270: 211-219. |
39 | Kim J Y, Balderas-Xicohténcatl R, Zhang L D, et al. Exploiting diffusion barrier and chemical affinity of metal-organic frameworks for efficient hydrogen isotope separation[J]. Journal of the American Chemical Society, 2017, 139(42): 15135-15141. |
40 | Hu X Y, Ding F Y, Xiong R J, et al. Highly effective H2/D2 separation within the stable Cu(Ⅰ)Cu(Ⅱ)-BTC: the effect of Cu(Ⅰ) structure on quantum sieving[J]. ACS Applied Materials & Interfaces, 2023, 15(3): 3941-3952. |
41 | Hu S, Lozada-Hidalgo M, Wang F C, et al. Proton transport through one-atom-thick crystals[J]. Nature, 2014, 516(7530): 227-230. |
42 | Lozada-Hidalgo M, Hu S, Marshall O, et al. Sieving hydrogen isotopes through two-dimensional crystals[J]. Science, 2016, 351(6268): 68-70. |
43 | Bukola S, Liang Y, Korzeniewski C, et al. Selective proton/deuteron transport through Nafion|graphene|Nafion sandwich structures at high current density[J]. Journal of the American Chemical Society, 2018, 140(5): 1743-1752. |
44 | Yasuda S, Matsushima H, Harada K, et al. Efficient hydrogen isotope separation by tunneling effect using graphene-based heterogeneous electrocatalysts in electrochemical hydrogen isotope pumping[J]. ACS Nano, 2022, 16(9): 14362-14369. |
45 | Labiche A, Malandain A, Molins M, et al. Modern strategies for carbon isotope exchange[J]. Angewandte Chemie International Edition, 2023, 62(36): e202303535. |
46 | Zhou L, Bian X Y, Yang S Z, et al. A two-step synthesis of deuterium labeled 8,8,9,9-d4-hexadecane from nonanoic acid[J]. Journal of Labelled Compounds and Radiopharmaceuticals, 2012, 55(4): 158-160. |
47 | Müller K, Seubert A. Synthesis of deuterium-labelled fluorobenzoic acids to be used as internal standards in isotope dilution mass spectrometry[J]. Isotopes in Environmental and Health Studies, 2014, 50(1): 88-93. |
48 | Mohrig J R, Reiter N J, Kirk R, et al. Effect of buffer general acid-base catalysis on the stereoselectivity of ester and thioester H/D exchange in D2O[J]. Journal of the American Chemical Society, 2011, 133(13): 5124-5128. |
49 | Li F, Chen Q, Liu C C, et al. Hydrogen-deuterium exchange reaction of 2-benzylthio-5-methyl-1,2,4-triazolo[1,5-a]pyrimidine under basic conditions[J]. Applied Magnetic Resonance, 2012, 42(2): 169-177. |
50 | Wang L, Murai Y, Yoshida T, et al. Hydrogen/deuterium exchange of cross-linkable α-amino acid derivatives in deuterated triflic acid[J]. Bioscience, Biotechnology, and Biochemistry, 2014, 78(7): 1129-1134. |
51 | Duttwyler S, Butterfield A M, Siegel J S. Arenium acid catalyzed deuteration of aromatic hydrocarbons[J]. The Journal of Organic Chemistry, 2013, 78(5): 2134-2138. |
52 | Sakamoto T, Mori K, Akiyama T. Chiral phosphoric acid catalyzed enantioselective transfer deuteration of ketimines by use of benzothiazoline as a deuterium donor: synthesis of optically active deuterated amines[J]. Organic Letters, 2012, 14(13): 3312-3315. |
53 | Hu Y, Liang L, Wei W T, et al. A convenient synthesis of deuterium labeled amines and nitrogen heterocycles with KOt-Bu/DMSO-d6 [J]. Tetrahedron, 2015, 71(9): 1425-1430. |
54 | Zhan M, Xu R X, Tian Y, et al. A simple and cost-effective method for the regioselective deuteration of phenols[J]. European Journal of Organic Chemistry, 2015, 2015(15): 3370-3373. |
55 | Sajiki H, Sawama Y, Monguchi Y. Efficient H-D exchange reactions using heterogeneous platinum-group metal on carbon-H2-D2O system[J]. Synlett, 2012, 23(7): 959-972. |
56 | Sawama Y, Nakano A, Matsuda T, et al. H-D exchange deuteration of arenes at room temperature[J]. Organic Process Research & Development, 2019, 23(4): 648-653. |
57 | Yamada T, Sawama Y, Shibata K, et al. Multiple deuteration of alkanes synergistically-catalyzed by platinum and rhodium on carbon as a mixed catalytic system[J]. RSC Advances, 2015, 5(18): 13727-13732. |
58 | Pery T, Pelzer K, Buntkowsky G, et al. Direct NMR evidence for the presence of mobile surface hydrides on ruthenium nanoparticles[J]. ChemPhysChem, 2005, 6(4): 605-607. |
59 | Pieters G, Taglang C, Bonnefille E, et al. Regioselective and stereospecific deuteration of bioactive aza compounds by the use of ruthenium nanoparticles[J]. Angewandte Chemie International Edition, 2014, 53(1): 230-234. |
60 | Palazzolo A, Feuillastre S, Pfeifer V, et al. Efficient access to deuterated and tritiated nucleobase pharmaceuticals and oligonucleotides using hydrogen-isotope exchange[J]. Angewandte Chemie International Edition, 2019, 58(15): 4891-4895. |
61 | Pfeifer V, Certiat M, Bouzouita D, et al. Hydrogen isotope exchange catalyzed by Ru nanocatalysts: labelling of complex molecules containing n-heterocycles and reaction mechanism insights[J]. Chemistry, 2020, 26(22): 4988-4996. |
62 | Valero M, Bouzouita D, Palazzolo A, et al. NHC-stabilized iridium nanoparticles as catalysts in hydrogen isotope exchange reactions of anilines[J]. Angewandte Chemie International Edition, 2020, 59(9): 3517-3522. |
63 | Palazzolo A, Naret T, Daniel-Bertrand M, et al. Tuning the reactivity of a heterogeneous catalyst using n-heterocyclic carbene ligands for C—H activation reactions[J]. Angewandte Chemie International Edition, 2020, 59(47): 20879-20884. |
64 | Li W, Rabeah J, Bourriquen F, et al. Scalable and selective deuteration of (hetero)arenes[J]. Nature Chemistry, 2022, 14(3): 334-341. |
65 | Liu K L, Qin R X, Li K J, et al. Atomically dispersed palladium catalyzes H/D exchange and isomerization of alkenes via reversible insertion and elimination[J]. Chem Catalysis, 2021, 1(7): 1480-1492. |
66 | Ren Y Q, Chang R P, Hu X, et al. Layer-by-layer enriching active Ni-N3C sites in nickel-nitrogen-carbon electrocatalysts for enhanced CO2-to-CO reduction[J]. Chinese Chemical Letters, 2023, 34(12): 108634. |
67 | Tang S Y, Wang Y S, Yuan Y F, et al. Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvesting[J]. New Carbon Materials, 2022, 37(1): 237-244. |
68 | Jiang W J, Shao F J, Cheng J X, et al. Calcium aluminate induced Pt0-Pt δ + coupling boost catalyzed H-D exchange reaction of arenes with deuterium oxide[J]. Asian Journal of Organic Chemistry, 2023, 12(4): e202200662. |
69 | Jiang W J, Shao F J, Xu Z P, et al. Oxygen vacancy of CeO2 modulated Pt catalyst facilitates H-D exchange of aniline aromatics by cleaving D2O[J]. AIChE Journal, 2024, 70(4): e18331. |
70 | Maegawa T, Fujiwara Y, Inagaki Y, et al. Mild and efficient H/D exchange of alkanes based on C—H activation catalyzed by rhodium on charcoal[J]. Angewandte Chemie International Edition, 2008, 47(29): 5394-5397. |
71 | Gao J, Ma R, Feng L, et al. Ambient hydrogenation and deuteration of alkenes using a nanostructured Ni-core-shell catalyst[J]. Angewandte Chemie International Edition, 2021, 60(34): 18591-18598. |
72 | Tuokko S, Pihko P M. Palladium on charcoal as a catalyst for stoichiometric chemo- and stereoselective hydrosilylations and hydrogenations with triethylsilane[J]. Organic Process Research & Development, 2014, 18(12): 1740-1751. |
73 | Sawama Y, Park K, Yamada T, et al. New gateways to the platinum group metal-catalyzed direct deuterium-labeling method utilizing hydrogen as a catalyst activator[J]. Chemical & Pharmaceutical Bulletin, 2018, 66(1): 21-28. |
74 | Zhou B, Chandrashekhar V G, Ma Z, et al. Development of a general and selective nanostructured cobalt catalyst for the hydrogenation of benzofurans, indoles and benzothiophenes[J]. Angewandte Chemie International Edition, 2023, 62(10): e202215699. |
75 | Li W, Qu R Y, Liu W P, et al. Copper-catalysed low-temperature water-gas shift reaction for selective deuteration of aryl halides[J]. Chemical Science, 2021, 12(42): 14033-14038. |
76 | 董灵玉, 葛睿, 原亚飞, 等. 多孔炭基二氧化碳电催化材料研究进展[J]. 化工学报, 2020, 71(6): 2492-2509. |
Dong L Y, Ge R, Yuan Y F, et al. Recent advances in porous carbon-based carbon dioxide electrocatalytic materials[J]. CIESC Journal, 2020, 71(6): 2492-2509. | |
77 | Dong L Y, Guan M H, Ren Y Q, et al. Mesoporous Fe-doped carbon electrocatalysts with highly exposed active sites for efficient synthesis of hydrogen peroxide and tandem epoxidation of propene[J]. Renewables, 2023, 1(5): 562-571. |
78 | Ou W, Qiu C T, Su C L. Photo- and electro-catalytic deuteration of feedstock chemicals and pharmaceuticals: a review[J]. Chinese Journal of Catalysis, 2022, 43(4): 956-970. |
79 | Qiu C T, Xu Y S, Fan X, et al. Highly crystalline K-intercalated polymeric carbon nitride for visible-light photocatalytic alkenes and alkynes deuterations[J]. Advanced Science, 2018, 6(1): 1801403. |
80 | Zhang Z F, Qiu C T, Xu Y S, et al. Semiconductor photocatalysis to engineering deuterated n-alkyl pharmaceuticals enabled by synergistic activation of water and alkanols[J]. Nature Communications, 2020, 11(1): 4722. |
81 | Nan X L, Wang Y, Li X B, et al. Site-selective D2O-mediated deuteration of diaryl alcohols via quantum dots photocatalysis[J]. Chemical Communications, 2021, 57(55): 6768-6771. |
82 | Han C, Han G Q, Yao S K, et al. Defective ultrathin ZnIn2S4 for photoreductive deuteration of carbonyls using D2O as the deuterium source[J]. Advanced Science, 2022, 9(3): e2103408. |
83 | Liu C B, Chen Z X, Su C L, et al. Controllable deuteration of halogenated compounds by photocatalytic D2O splitting[J]. Nature Communications, 2018, 9(1): 80. |
84 | Luo T, Wang Z, Chen Y L, et al. Photocatalytic dehalogenative deuteration of halides over a robust metal-organic framework[J]. Angewandte Chemie International Edition, 2023, 62(48): e202306267. |
85 | Liu C B, Han S Y, Li M Y, et al. Electrocatalytic deuteration of halides with D2O as the deuterium source over a copper nanowire arrays cathode[J]. Angewandte Chemie International Edition, 2020, 59(42): 18527-18531. |
86 | Wu Y M, Liu C B, Wang C H, et al. Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H (D) source over a Pd-P cathode[J]. Angewandte Chemie International Edition, 2020, 59(47): 21170-21175. |
87 | Wu Y M, Liu C B, Wang C H, et al. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water[J]. Nature Communications, 2021, 12(1): 3881. |
88 | Guo S S, Wu Y M, Wang C H, et al. Electrocatalytic hydrogenation of quinolines with water over a fluorine-modified cobalt catalyst[J]. Nature Communications, 2022, 13(1): 5297. |
89 | Li H Z, Gao Y, Wu Y M, et al. σ-Alkynyl adsorption enables electrocatalytic semihydrogenation of terminal alkynes with easy-reducible/passivated groups over amorphous PdS x nanocapsules[J]. Journal of the American Chemical Society, 2022, 144(42): 19456-19465. |
90 | Song Z Y, Cheng C Q, Wang C H, et al. Interstitial modification of palladium nanocubes with nitrogen atoms promotes aqueous electrocatalytic alkyne semihydrogenation[J]. ACS Materials Letters, 2023, 5(11): 3068-3073. |
91 | Li R, Wu Y M, Wang C H, et al. One-pot H/D exchange and low-coordinated iron electrocatalyzed deuteration of nitriles in D2O to α, β-deuterio aryl ethylamines[J]. Nature Communications, 2022, 13(1): 5951. |
92 | Wu Y M, Li M Y, Li T L, et al. Electrosynthesis of 15N-labeled amino acids from 15N-nitrite and ketonic acids[J]. Science China Chemistry, 2023, 66(6): 1854-1859. |
93 | Kurimoto A, Sherbo R S, Cao Y, et al. Electrolytic deuteration of unsaturated bonds without using D2 [J]. Nature Catalysis, 2020, 3: 719-726. |
94 | Ou W, Xiang X D, Zou R, et al. Room-temperature palladium-catalyzed deuterogenolysis of carbon oxygen bonds towards deuterated pharmaceuticals[J]. Angewandte Chemie International Edition, 2021, 60(12): 6357-6361. |
[1] | Ying LIU, Fang ZHENG, Qiwei YANG, Zhiguo ZHANG, Qilong REN, Zongbi BAO. Recent progress in adsorption and separation of xylene isomers [J]. CIESC Journal, 2024, 75(4): 1081-1095. |
[2] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
[3] | Baofeng WANG, Shugao WANG, Fangqin CHENG. Progress in preparation and CO2 adsorption properties of solid waste-based sulfur-doped porous carbon materials [J]. CIESC Journal, 2024, 75(2): 395-411. |
[4] | Qiang ZHANG, Xianfei WANG, Kai WANG, Guangsheng LUO, Zhongkai LU. Advances in metal-free catalysts in copolymerization of epoxides and cyclic anhydrides [J]. CIESC Journal, 2024, 75(1): 60-73. |
[5] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[6] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[7] | Jinfeng HE, Xiuzhen LI, Jianyao KOU, Tingjie TAO, Can YU, Huan LIU, Yongyuan CHEN, Haojian ZHAO, Dahao JIANG, Xiaonian LI. Ethanol upgrading to higher alcohols over ordered mesoporous alumina supported Cu-based catalysts [J]. CIESC Journal, 2023, 74(3): 1082-1091. |
[8] | Min LI, Xueru YAN, Xinlei LIU. Advances in benzimidazole-linked polymer adsorbents and membranes [J]. CIESC Journal, 2023, 74(2): 599-616. |
[9] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
[10] | Yanle LI, Yilin LIU, Junjie HUO, Yanxia SUN, Shengde DONG, Xin HE, Qi XU, Luxiang MA, Yuan ZHOU, Chunxi HAI. Research progress of aluminum adsorbents in lithium extraction from salt lakes [J]. CIESC Journal, 2023, 74(12): 4777-4791. |
[11] | Deqi KONG, Yingying ZHANG, Wenling WU, Jun MA, Zhenxing SONG, Donghui ZHANG, Yanjun ZHANG. Simulation and analysis of oxygen production process by six-bed pressure swing adsorption process [J]. CIESC Journal, 2023, 74(12): 4934-4944. |
[12] | Xinqi ZHANG, Chen ZHANG, Duoyong ZHANG, Tao XUAN, Zhuozhen GAN, Xuancan ZHU, Liwei WANG. Study on the carbon capture performance of highly selective PEI@MOF-808 adsorbent in humid flue gas [J]. CIESC Journal, 2023, 74(10): 4330-4342. |
[13] | Hao ZHANG, Ziyue WANG, Yujie CHENG, Xiaohui HE, Hongbing JI. Progress in the mass production of single-atom catalysts [J]. CIESC Journal, 2023, 74(1): 276-289. |
[14] | Xuemei LANG, Liumei YAO, Shuanshi FAN, Gang LI, Yanhong WANG. Numerical simulation of methane hydrate formation and heat transfer in porous materials [J]. CIESC Journal, 2022, 73(9): 3851-3860. |
[15] | Wenjing ZHANG, Jing LI, Zidong WEI. Electrocatalysis from a mesoscale perspective: interface, membrane and porous electrode [J]. CIESC Journal, 2022, 73(6): 2289-2305. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||