CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1065-1080.DOI: 10.11949/0438-1157.20240173
• Reviews and monographs • Next Articles
Jun LI(), Liang ZHAO(), Jinsen GAO, Chunming XU
Received:
2024-02-06
Revised:
2024-03-23
Online:
2024-06-06
Published:
2024-04-25
Contact:
Liang ZHAO
通讯作者:
赵亮
作者简介:
李俊(1995—),男,博士研究生,2021310209@student.cup.edu.cn
基金资助:
CLC Number:
Jun LI, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress of extraction technology in processing different distillate by grade and composition[J]. CIESC Journal, 2024, 75(4): 1065-1080.
李俊, 赵亮, 高金森, 徐春明. 不同馏分油分级分质加工中萃取技术研究进展[J]. 化工学报, 2024, 75(4): 1065-1080.
Add to citation manager EndNote|Ris|BibTeX
项 目 | Udex | Sulfolane | IFP | Arosolvan | Formex | Morphylane |
---|---|---|---|---|---|---|
溶剂 | 甘醇类 | SUL | DMSO | NMP | NFM | NFM |
塔类型 | 筛板塔 | 筛板塔/转盘塔 | 转盘塔 | 混合沉降槽 | — | 填料塔 |
操作条件 | ||||||
温度/℃ | 120~140 | 70~99 | 30 | 30~60 | 40~70 | 40~80 |
压力/MPa | 0.7~0.8 | 0.3~0.5 | 0.9 | 常压 | — | 0.3 |
剂油比 | 10.0~17.0 | 2.0~3.5 | 7.0~8.0 | 7.7 | 4.0~6.0 | 0.8~1.0 |
回流比 | 1.0~1.4 | 0.4~0.6 | 0.32 | 0.8~1.2 | — | — |
溶剂含水率/%(体积分数) | 8.0~10.0 | 0.5~0.7 | 9.0 | 45(二甘醇) | 5.0 | — |
芳烃回收率 | ||||||
苯/%(质量分数) | 99.5 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 |
甲苯/%(质量分数) | 98.0 | 99.0 | 98.0 | 99.0 | 99.0 | 99.5 |
二甲苯/%(质量分数) | 95.0 | 96.0 | 96.0 | 96.0 | 97.0 | 97.0 |
C9芳烃/%(质量分数) | 65.0~96.0 | >76.0 | >50.0 | >60.0 | — | — |
消耗 | ||||||
电/(kWh) | 12.0~36.0 | 6.3 | 9.43 | 11.0 | 10.0~13.0 | — |
水/t | 41.0~100.0 | 31.0 | 26.0 | 30.0 | 8.0~10.0 | — |
蒸汽/t | 1.4~1.9 | 0.8 | 2.25 | 0.8 | 0.65~0.85 | — |
溶剂/kg | 0.55 | 0.13 | 0.14 | 0.10 | 0.10 | 0.09 |
Table 1 Separation characteristics of several aromatics extraction techniques
项 目 | Udex | Sulfolane | IFP | Arosolvan | Formex | Morphylane |
---|---|---|---|---|---|---|
溶剂 | 甘醇类 | SUL | DMSO | NMP | NFM | NFM |
塔类型 | 筛板塔 | 筛板塔/转盘塔 | 转盘塔 | 混合沉降槽 | — | 填料塔 |
操作条件 | ||||||
温度/℃ | 120~140 | 70~99 | 30 | 30~60 | 40~70 | 40~80 |
压力/MPa | 0.7~0.8 | 0.3~0.5 | 0.9 | 常压 | — | 0.3 |
剂油比 | 10.0~17.0 | 2.0~3.5 | 7.0~8.0 | 7.7 | 4.0~6.0 | 0.8~1.0 |
回流比 | 1.0~1.4 | 0.4~0.6 | 0.32 | 0.8~1.2 | — | — |
溶剂含水率/%(体积分数) | 8.0~10.0 | 0.5~0.7 | 9.0 | 45(二甘醇) | 5.0 | — |
芳烃回收率 | ||||||
苯/%(质量分数) | 99.5 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 |
甲苯/%(质量分数) | 98.0 | 99.0 | 98.0 | 99.0 | 99.0 | 99.5 |
二甲苯/%(质量分数) | 95.0 | 96.0 | 96.0 | 96.0 | 97.0 | 97.0 |
C9芳烃/%(质量分数) | 65.0~96.0 | >76.0 | >50.0 | >60.0 | — | — |
消耗 | ||||||
电/(kWh) | 12.0~36.0 | 6.3 | 9.43 | 11.0 | 10.0~13.0 | — |
水/t | 41.0~100.0 | 31.0 | 26.0 | 30.0 | 8.0~10.0 | — |
蒸汽/t | 1.4~1.9 | 0.8 | 2.25 | 0.8 | 0.65~0.85 | — |
溶剂/kg | 0.55 | 0.13 | 0.14 | 0.10 | 0.10 | 0.09 |
装置所属单位 | 设计规模/(万吨/年) | 采用技术 | 装置所属单位 | 设计规模/(万吨/年) | 采用技术 |
---|---|---|---|---|---|
大连石化 | 100 | 美国GT-BTX | 中国石油大连分公司 | 15 | 中国SED |
独山子石化 | 100 | 美国GT-BTX | 福佳大化 | 100 | 中国SED |
青岛丽东 | 70 | 美国GT-BTX | 四川石化 | 90 | 中国SED |
广西石化 | 100 | 美国/荷兰 Sulfolane | 中海油惠州 | 80 | 中国SED |
乌鲁木齐石化 | 70 | 中国SUPER-SAE-Ⅱ | 福建炼化 | 78 | 中国SED |
辽阳石化 | 60 | 中国SUPER-SAE-Ⅱ | 镇海炼化 | 70 | 中国SED |
抚顺石化 | 56 | 中国SUPER-SAE-Ⅱ | 上海赛科公司 | 55 | 中国SED |
兰州石化 | 40 | 中国SUPER-SAE-Ⅱ | 茂名石化 | 46 | 中国SED |
大庆石化 | 40 | 中国SUPER-SAE-Ⅱ | 齐鲁石化 | 45 | 中国SED |
华锦石化 | 22 | 中国SUPER-SAE-Ⅱ | 和邦化学 | 25 | 中国SED |
哈尔滨石化 | 12 | 中国SUPER-SAE-Ⅱ | 青岛大炼油 | 20 | 中国SED |
宁夏石化 | 10 | 中国SUPER-SAE-Ⅱ |
Table 2 Scale of several aromatics separation plants in China
装置所属单位 | 设计规模/(万吨/年) | 采用技术 | 装置所属单位 | 设计规模/(万吨/年) | 采用技术 |
---|---|---|---|---|---|
大连石化 | 100 | 美国GT-BTX | 中国石油大连分公司 | 15 | 中国SED |
独山子石化 | 100 | 美国GT-BTX | 福佳大化 | 100 | 中国SED |
青岛丽东 | 70 | 美国GT-BTX | 四川石化 | 90 | 中国SED |
广西石化 | 100 | 美国/荷兰 Sulfolane | 中海油惠州 | 80 | 中国SED |
乌鲁木齐石化 | 70 | 中国SUPER-SAE-Ⅱ | 福建炼化 | 78 | 中国SED |
辽阳石化 | 60 | 中国SUPER-SAE-Ⅱ | 镇海炼化 | 70 | 中国SED |
抚顺石化 | 56 | 中国SUPER-SAE-Ⅱ | 上海赛科公司 | 55 | 中国SED |
兰州石化 | 40 | 中国SUPER-SAE-Ⅱ | 茂名石化 | 46 | 中国SED |
大庆石化 | 40 | 中国SUPER-SAE-Ⅱ | 齐鲁石化 | 45 | 中国SED |
华锦石化 | 22 | 中国SUPER-SAE-Ⅱ | 和邦化学 | 25 | 中国SED |
哈尔滨石化 | 12 | 中国SUPER-SAE-Ⅱ | 青岛大炼油 | 20 | 中国SED |
宁夏石化 | 10 | 中国SUPER-SAE-Ⅱ |
36 | Li W S, Wang C X, Liu J, et al. Research progresses in composition and processing technologies of Chinese shale oil[J]. Applied Chemical Industry, 2015, 44(7): 1318-1322. |
37 | 袁士义, 雷征东, 李军诗, 等. 陆相页岩油开发技术进展及规模效益开发对策思考[J]. 中国石油大学学报 (自然科学版), 2023, 47(5): 13-24. |
Yuan S Y, Lei Z D, Li J S, et al. Progress in technology for the development of continental shale oil and thoughts on the development of scale benefits and strategies[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 13-24. | |
38 | 赵宝超, 袁帅, 王琦元. 我国页岩油组成及加工技术的研究进展[J]. 化工设计通讯, 2018, 44(1): 249-250. |
Zhao B C, Yuan S, Wang Q Y. Research progress of shale oil composition and processing technology in China[J]. Chemical Engineering Design Communications, 2018, 44(1): 249-250. | |
39 | Li Y J, Dong S L, Wang L L, et al. The extraction of aromatics using N-methylpyrrolidone: liquid-liquid equilibrium determination and mechanism exploration[J]. Chinese Journal of Chemical Engineering, 2023, 64: 117-127. |
40 | Shi J J, Wu X J, Yu G J, et al. Study of aromatic extraction from light cycle oil from the viewpoint of industrial applications[J]. Fuel, 2024, 357: 130023. |
41 | Shekaari H, Zafarani-Moattar M T, Mohammadi B. Effective extraction of benzene and thiophene by novel deep eutectic solvents from hexane/aromatic mixture at different temperatures[J]. Fluid Phase Equilibria, 2019, 484: 38-52. |
42 | 戴贵容, 唐晓东, 杨利斌, 等. 催化重汽油萃取脱芳溶剂的优化研究[J]. 应用化工, 2022, 51(S1): 101-105. |
Dai G R, Tang X D, Yang L B, et al. Study on optimization of extraction dearomatization solvent for catalytic heavy gasoline[J]. Applied Chemical Industry, 2022, 51(S1): 101-105. | |
43 | 孙博, 朱丽娜, 金书含, 等. 石脑油萃取法脱芳烃的研究进展[J]. 精细石油化工进展, 2021, 22(5): 41-46. |
Sun B, Zhu L N, Jin S H, et al. Research progress of naphtha extraction dearomatization[J]. Advances in Fine Petrochemicals, 2021, 22(5): 41-46. | |
44 | 疏其朋, 李佳书, 李进龙. 石脑油液液萃取脱环烷烃和芳烃溶剂的筛选[J]. 石油化工, 2019, 48(4): 362-366. |
Shu Q P, Li J S, Li J L. Selection of solvent for removing cycloalkane and aromatic hydrocarbon from naphtha by liquid-liquid extraction[J]. Petrochemical Technology, 2019, 48(4): 362-366. | |
45 | Mahmoudi J, Lotfollahi M N. Extraction of benzene from a narrow cut of naphtha via liquid-liquid extraction using pure-sulfolane and 2-propanol-sulfolane-mixed solvents[J]. Korean Journal of Chemical Engineering, 2010, 27(1): 214-217. |
46 | 史云鹤, 李长明, 周金波, 等. 石脑油萃取脱芳烃技术研究进展[J]. 化工进展, 2015, 34(2): 360-369. |
Shi Y H, Li C M, Zhou J B, et al. Research advances in extraction technology for dearomatization of naphtha[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 360-369. | |
47 | 史云鹤. 石脑油脱芳烃工艺技术研究[D]. 兰州: 兰州交通大学, 2015. |
Shi Y H. Research on naphtha dearomatization process technology[D]. Lanzhou: Lanzhou Jiatong University, 2015. | |
48 | 张琳娜, 李冬, 朱永红, 等. 煤基石脑油萃取脱芳制备溶剂油工艺研究[J]. 精细化工, 2016, 33(6): 703-708. |
Zhang L N, Li D, Zhu Y H, et al. Study on the liquid-liquid extraction aromatic process for the coal-derived naphtha to produce solvent oil[J]. Fine Chemicals, 2016, 33(6): 703-708. | |
49 | 米多. 芳烃抽提技术进展[J]. 化学工业, 2009, 27(8): 34-37, 45. |
Mi D. Recent progress of extraction technologies for aromatics[J]. Chemical Industry, 2009, 27(8): 34-37, 45. | |
50 | 施志国, 张翠金. 芳烃抽提技术研究进展[J]. 化肥设计, 2018, 56(2): 4-8. |
1 | 丁凯, 刘名瑞, 王佩弦, 等. 船用燃料油现状及未来发展分析[J]. 当代化工, 2023, 52(6): 1453-1457. |
Ding K, Liu M R, Wang P X, et al. Analysis on current situation and future development of marine fuel oil[J]. Contemporary Chemical Industry, 2023, 52(6): 1453-1457. | |
2 | 王澈. 我国芳烃产业链现状与发展趋势[J]. 当代石油石化, 2023, 31(10): 16-21, 49. |
Wang C. Status and development trend of China's aromatics industry chain[J]. Petroleum & Petrochemical Today, 2023, 31(10): 16-21, 49. | |
3 | 王鹏. 国内首套ORP除烯烃装置的工艺及应用研究[J]. 现代化工, 2024, 44(1): 230-233. |
Wang P. Research on process and application of China's first ORP olefin removal unit[J]. Modern Chemical Industry, 2024, 44(1): 230-233. | |
4 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
5 | 许江, 程中克, 王小强, 等. 不同种类石脑油的裂解产物分布及收率对比分析[J]. 石油与天然气化工, 2019, 48(3): 23-27. |
Xu J, Cheng Z K, Wang X Q, et al. Comparative analysis on distribution and yield of pyrolysis products of different kinds of naphtha[J]. Chemical Engineering of Oil & Gas, 2019, 48(3): 23-27. | |
6 | 梁嘉麟, 林海, 曾兴业. 石脑油烃组成与主要裂解产物收率的关系[J]. 石化技术, 2021, 28(12): 18-19, 7. |
Liang J L, Lin H, Zeng X Y. Relationship between the composition of naphtha hydrocarbon and the yield of main cracking products[J]. Petrochemical Industry Technology, 2021, 28(12): 18-19, 7. | |
7 | 孔令健. 提高石脑油综合利用率及经济性的探讨[J]. 石油化工技术与经济, 2021, 37(6): 15-20. |
50 | Shi Z G, Zhang C J. Research progress of aromatic extraction[J]. Chemical Fertilizer Design, 2018, 56(2): 4-8. |
51 | 陈利维, 张天嵌. 芳烃抽提技术研究进展和应用现状[J]. 石油化工应用, 2017, 36(1): 7-10. |
Chen L W, Zhang T Q. Research progress and application status of aromatics extraction technology[J]. Petrochemical Industry Application, 2017, 36(1): 7-10. | |
52 | 谢雅迪. 芳烃分离技术应用及进展[J]. 炼油与化工, 2023, 34(1): 7-10. |
Xie Y D. Application and progress of aromatic separation technology[J]. Refining and Chemical Industry, 2023, 34(1): 7-10. | |
53 | 张志良, 肖庆伟. SED芳烃抽提工艺的工业应用[J]. 石油炼制与化工, 2008, 39(4): 41-45. |
Zhang Z L, Xiao Q W. Industry application of SED aromatics extraction technology[J]. Petroleum Processing and Petrochemicals, 2008, 39(4): 41-45. | |
54 | 屈坡. 40万吨/年芳烃抽提工艺技术路线的比选[D]. 兰州: 兰州大学, 2013. |
Qu P. The compare choose of the four hundred thousand tons/year aromatics extraction technology routes[D]. Lanzhou: Lanzhou University, 2013. | |
55 | 高金森, 赵亮, 郝天臻, 等. 一种催化裂化汽油脱硫的耦合方法: 201510642456.2[P]. 2017-07-11. |
Gao J S, Zhao L, Hao T Z, et al. A coupling method for desulfurization of FCC gasoline: 201510642456.2[P]. 2017-07-11. | |
56 | 高金森, 赵亮, 郝天臻, 等. 一种汽油脱硫方法: 201510643054.4[P]. 2017-08-08. |
Gao J S, Zhao L, Hao T Z, et al. A method for desulfurization of gasoline: 201510643054.4[P]. 2017-08-08. | |
7 | Kong L J. Discussion on improving the comprehensive utilization rate and economy of naphtha[J]. Technology & Economics in Petrochemicals, 2021, 37(6): 15-20. |
8 | 谭广飞. 乙烯装置石脑油原料提质优化模拟[J]. 当代石油石化, 2021, 29(10): 21-26. |
Tan G F. Optimization simulation of naphtha feedstock upgrading in ethylene plant[J]. Petroleum & Petrochemical Today, 2021, 29(10): 21-26. | |
9 | 王小强, 蔡小霞, 景媛媛, 等. 蒸汽裂解生产乙烯的原料优化选择与配置[J]. 石油与天然气化工, 2024, 53(1): 47-53. |
Wang X Q, Cai X X, Jing Y Y, et al. Optimal selection and configuration of feedstock for ethylene by steam cracking[J]. Chemical Engineering of Oil & Gas, 2024, 53(1): 47-53. | |
10 | 李涛. 乙烯生产原料的发展状况分析[J]. 石油化工技术经济, 2005, 21(5): 12-17. |
Li T. Analysis on the development of raw material for ethylene production[J]. Techno-economics in Petrochemicals, 2005, 21(5): 12-17. | |
11 | 陈香生. 重油直接接触裂解制乙烯工艺的工业化前景[J]. 炼油设计, 2000, 30(6): 1-4. |
Chen X S. Commercial prospect of heavy oil contact cracking (HCC) for ethylene production[J]. Petroleum Refinery Engineering, 2000, 30(6): 1-4. | |
12 | 张方方, 张新宽, 于中伟. 提高石脑油综合利用效率的措施及优化方案[J]. 石油炼制与化工, 2021, 52(5): 16-21. |
Zhang F F, Zhang X K, Yu Z W. Measures and optimization scheme for improving comprehensive utilization efficiency of naphtha[J]. Petroleum Processing and Petrochemicals, 2021, 52(5): 16-21. | |
13 | 林堂茂, 刘小多, 孙雪婷. 石化行业面对“双碳”目标的应对措施[J]. 现代化工, 2023, 43(3): 1-5. |
Lin T M, Liu X D, Sun X T. Countermeasures of petrochemical industry for carbon peak and neutrality goals[J]. Modern Chemical Industry, 2023, 43(3): 1-5. | |
57 | 唐晓东, 杨谨, 仝保田, 等. 催化裂化柴油萃取脱芳烃技术研究[J]. 石油炼制与化工, 2020, 51(8): 12-18. |
Tang X D, Yang J, Tong B T, et al. Study on aromatics removal from FCC diesel by extraction[J]. Petroleum Processing and Petrochemicals, 2020, 51(8): 12-18. | |
58 | 谢琼玉, 徐斌. 催化裂化柴油溶剂抽提降芳烃工艺技术研究[J]. 石油炼制与化工, 2012, 43(4): 10-14. |
Xie Q Y, Xu B. Research on the solvent extraction of aromatic hydrocarbon from FCC diesel fractions[J]. Petroleum Processing and Petrochemicals, 2012, 43(4): 10-14. | |
59 | 边超. 催化裂化柴油抽提芳烃工艺研究[D]. 天津: 河北工业大学, 2016. |
Bian C. The study on aromatics extraction process of FCC disesel oil[D]. Tianjin: Hebei University of Technology, 2016. | |
60 | Li H, Guo J J, Zhang Y H, et al. Influence of solvent structure on the extraction of aromatics from FCC diesel and computational thermodynamics study[J]. Fuel Processing Technology, 2021, 224: 107021. |
61 | Li H, Guo J J, Zhang Y H, et al. Research on separation of aromatics from FCC diesel using organic solvent: a combination of experiments and quantum chemical calculations[J]. Fuel, 2022, 308: 121982. |
62 | 王福颖. 萃取溶剂与直馏柴油关键组分的相互作用机制研究[D]. 北京: 中国石油大学 (北京), 2023. |
Wang F Y. Study on the interaction mechanism between extraction solvent and key components of straight-run diesel oil[D]. Beijing: China University of Petroleum, 2023. | |
63 | Yang H W, Yao T, Guo L, et al. Structural features of Qitaihe high-temperature coal tar by sequentially fractional extraction[J]. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 2018, 40(5): 493-500. |
64 | Feng Y, Sun Y D, Zhang S. Composition analysis of aromatics-rich extraction oil from FCC slurry[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 766-770. |
14 | 张力, 刘键, 王琰. FCC汽油窄馏分族组成及辛烷值与硫含量分布规律研究[J]. 炼油技术与工程, 2023, 53(6): 13-16, 35. |
Zhang L, Liu J, Wang Y. Study on the group composition, octane number and sulfur content distribution of narrow fraction of FCC gasoline[J]. Petroleum Refinery Engineering, 2023, 53(6): 13-16, 35. | |
15 | 张登前, 唐文成, 习远兵, 等. 溶剂抽提-选择性加氢脱硫组合技术的开发及工业应用[J]. 石油炼制与化工, 2019, 50(1): 37-41. |
Zhang D Q, Tang W C, Xi Y B, et al. Development and industrial application of solvent extraction-selective hydrodesulfurization combination technology[J]. Petroleum Processing and Petrochemicals, 2019, 50(1): 37-41. | |
16 | 刘建民, 田勇震, 宋颖. 催化裂化汽油脱硫技术概述与对比分析[J]. 辽宁化工, 2023, 52(4): 533-538. |
Liu J M, Tian Y Z, Song Y. Overview and comparative analysis of catalytic cracking gasoline desulfurization technology[J]. Liaoning Chemical Industry, 2023, 52(4): 533-538. | |
17 | 于楠, 孙仁金, 孙悦, 等. “双碳”目标下成品油行业发展现状与思考[J]. 现代化工, 2022, 42(10): 5-10. |
Yu N, Sun R J, Sun Y, et al. Development situation and consideration of refined oil industry under “peak carbon dioxide emissions and carbon neutrality” targets[J]. Modern Chemical Industry, 2022, 42(10): 5-10. | |
18 | 胡俊利, 王高杰. 不同汽油馏分加工路线选择[J]. 广州化工, 2023, 51(16): 27-30. |
Hu J L, Wang G J. Route selection of different gasoline fraction[J]. Guangzhou Chemical Industry, 2023, 51(16): 27-30. | |
19 | 王定博. 催化裂化 (FCC) 轻汽油综合利用[J]. 工业催化, 2022, 30(9): 14-20. |
Wang D B. Utilization of FCC light gasoline[J]. Industrial Catalysis, 2022, 30(9): 14-20. | |
20 | 张诗晓, 魏晓丽, 张久顺. 催化裂化汽油辛烷值关键组分的反应特性[J]. 化学工程, 2022, 50(6): 67-72. |
Zhang S X, Wei X L, Zhang J S. Reaction characteristics of key components of FCC gasoline octane number[J]. Chemical Engineering (China), 2022, 50(6): 67-72. | |
21 | 王佳. 柴油烃类组成分子水平预测研究[D]. 北京: 石油化工科学研究院, 2015. |
Wang J. Study on predicting composition of diesel oil hydrocarbon in molecular level[D]. Beijing: Research Institute of Petroleum Processing, 2015. | |
22 | 张锐, 鞠雪艳, 李云, 等. 催化裂化柴油加氢处理生产高密度喷气燃料的研究[J]. 石油炼制与化工, 2022, 53(1): 46-52. |
Zhang R, Ju X Y, Li Y, et al. Development of the LCO hydrotreating technology to produce high-density jet fuel[J]. Petroleum Processing and Petrochemicals, 2022, 53(1): 46-52. | |
23 | 鞠雪艳, 张锐, 习远兵, 等. 催化裂化柴油加氢生产高密度喷气燃料过程研究[J]. 石油炼制与化工, 2022, 53(6): 6-11. |
Ju X Y, Zhang R, Xi Y B, et al. Study on the process of high density jet fuel production from FCC LCO[J]. Petroleum Processing and Petrochemicals, 2022, 53(6): 6-11. | |
24 | 徐先荣, 毛安国. 催化裂化柴油轻重馏分的裂化性能研究[J]. 炼油技术与工程, 2007, 37(6): 1-5. |
Xu X R, Mao A G. Study on the catalytic cracking performance of FCC LCO[J]. Petroleum Refinery Engineering, 2007, 37(6): 1-5. | |
25 | 柯晓明, 王丽敏. 中国第五阶段汽柴油质量升级路线图分析[J]. 国际石油经济, 2016, 24(5): 21-27. |
Ke X M, Wang L M. Analysis of the fifth stage of gasoline and diesel quality upgrade roadmap in China[J]. International Petroleum Economics, 2016, 24(5): 21-27. | |
26 | 孔劲媛, 罗艳托, 胡爱君. 中国成品油市场2022年回顾与2023年供需预测[J]. 国际石油经济, 2023, 31(4): 59-66. |
Kong J Y, Luo Y T, Hu A J. Review of China's refined oil market in 2022 and forecast of supply and demand in 2023[J]. International Petroleum Economics, 2023, 31(4): 59-66. | |
27 | 魏贤勇, 宗志敏, 赵炜, 等. 从高温煤焦油中分离缩合芳香族化合物的基础研究和技术开发[J]. 石油学报 (石油加工), 2022, 38(3): 500-511. |
Wei X Y, Zong Z M, Zhao W, et al. Basic research and technology development for the separation of condensed aromatics from high-temperature coal tar[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(3): 500-511. | |
28 | 汤钟情. 神木煤焦油中酚类化合物的分布及重油馏分分析利用[D]. 北京: 中国石油大学 (北京), 2022. |
Tang Z Q. Distribution of phenolic compounds in Shenmu coal tar and analysis and utilization of heavy oil fractions[D]. Beijing: China University of Petroleum, 2022. | |
29 | 吴玉起, 钟梅, 亚力昆江·吐尔逊. 低温煤焦油沥青组分组成与结构分析[J]. 洁净煤技术, 2023, 29(7): 209-217. |
Wu Y Q, Zhong M, Yalkunjan T. Composition and structure analysis of the components from low-temperature coal tar pitch[J]. Clean Coal Technology, 2023, 29(7): 209-217. | |
30 | 白妮, 王爱民, 王金玺, 等. 陕北中低温煤焦油全组成的GC/MS分析[J]. 化学工程与装备, 2022(5): 232-233. |
Bai N, Wang A M, Wang J X, et al. GC/MS analysis of total composition of medium and low temperature coal tar in northern Shaanxi[J]. Chemical Engineering & Equipment, 2022 ( 5 ) : 232-233. | |
31 | 胡冬冬. 高温煤焦油分级萃取及其制备煤基喷气燃料研究[D]. 马鞍山: 安徽工业大学, 2018. |
Hu D D. Research on fractional extraction of high temperature coal tar for preparing coal-based jet fuels[D]. Ma'anshan: Anhui University of Technology, 2018. | |
32 | 葛庆, 张军, 廖俊, 等. 煤焦油加氢技术研究进展[J]. 能源化工, 2023, 44(5): 16-21. |
Ge Q, Zhang J, Liao J, et al. Research progress of coal tar hydrogenation technology[J]. Energy Chemical Industry, 2023, 44(5): 16-21. | |
33 | 闫厚春, 范雯阳, 崔鹏, 等. 中低温煤焦油的加工利用现状[J]. 应用化工, 2019, 48(8): 1904-1907. |
Yan H C, Fan W Y, Cui P, et al. Current status of processing and utilization of medium and low temperature coal tar[J]. Applied Chemical Industry, 2019, 48(8): 1904-1907. | |
34 | 崔达. 页岩油组成结构的分子表征与热演化特性研究[D]. 吉林: 东北电力大学, 2019. |
Cui D. Molecular characterization and thermal evolution features of shale oil composition and structure[D]. Jilin: Northeast Dianli University, 2019. | |
35 | 王擎, 纪托, 迟铭书, 等. 汪清页岩油组成结构的谱学分析[J]. 石油学报 (石油加工), 2016, 32(5): 1045-1054. |
Wang Q, Ji T, Chi M S, et al. Spectroscopy analysis on structure of Wangqing shale oil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(5): 1045-1054. | |
36 | 李文深, 王彩旭, 刘洁, 等. 我国页岩油组成及加工技术的研究进展[J]. 应用化工, 2015, 44(7): 1318-1322. |
65 | 曹玉骁. 催化裂化油浆的分离及相平衡预测[D]. 北京: 中国石油大学 (北京), 2021. |
Cao Y X. Separation of chemically cracked oil slurry and prediction of phase equilibrium[D]. Beijing: China University of Petroleum, 2021. | |
66 | 石俊峰, 曹祖宾, 王海超, 等. 催化裂化油浆糠醛精制工艺研究[J]. 化学与粘合, 2010, 32(1): 68-71. |
Shi J F, Cao Z B, Wang H C, et al. Studies on processing of FCC slurry furfural refining[J]. Chemistry and Adhesion, 2010, 32(1): 68-71. | |
67 | 黄传峰, 杨涛, 刘亚青, 等. 萃取剂对催化油浆抽提分离的影响研究[J]. 当代化工, 2023, 52(6): 1341-1344. |
Huang C F, Yang T, Liu Y Q, et al. Influence of extractant on FCC slurry extraction and separation process[J]. Contemporary Chemical Industry, 2023, 52(6): 1341-1344. | |
68 | Zhu M H, Liu Y D, Wang L T, et al. Selective extraction of aromatics from residual oil with subcritical water[J]. Chemical Engineering Research and Design, 2024, 202: 444-454. |
69 | 杨涛, 张生娟, 王亦颿, 等. 溶剂萃取在催化油浆组分分离中应用的研究进展[J]. 化学工程师, 2022, 36(8): 77-80, 110. |
Yang T, Zhang S J, Wang Y F, et al. Research progress of solvent extraction in the separation of catalytic oil slurry components[J]. Chemical Engineer, 2022, 36(8): 77-80, 110. | |
70 | 陆俊凤, 孙怀宇, 王艳磊, 等. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
Lu J F, Sun H Y, Wang Y L, et al. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds[J]. CIESC Journal, 2023, 74(9): 3665-3680. | |
71 | 殷梦凡, 唐政, 张睿, 等. 离子液体液液萃取分离正辛烷/邻二甲苯[J]. 化工学报, 2021, 72(12): 6282-6290. |
Yin M F, Tang Z, Zhang R, et al. Separation of n-octane and o-xylene by liquid-liquid extraction with ionic liquids[J]. CIESC Journal, 2021, 72(12): 6282-6290. | |
72 | 吴小佳. 离子液体基低共熔溶剂用于萃取分离芳烃烷烃的基础研究[D]. 北京: 北京化工大学, 2022. |
Wu X J. Extraction of aromatic hydrocarbons from alkanes using ionic liquid-based deep eutectic solvents[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
73 | Kim M J, Shin S H, Kim Y J, et al. Role of alkyl group in the aromatic extraction using pyridinium-based ionic liquids[J]. Journal of Physical Chemistry B, 2013, 117(47): 14827-14834. |
74 | Al-Rashed O A, Fahim M A, Shaaban M. Prediction and measurement of phase equilibria for the extraction of BTX from naphtha reformate using BMIMPF6 ionic liquid[J]. Fluid Phase Equilibria, 2014, 363: 248-262. |
75 | 童浩. 离子液体萃取分离芳烃/脂肪烃的研究[D]. 北京: 中国石油大学 (北京), 2016. |
Tong H. Separation of aromatic and aliphatic hydrocarborn by ionic liquids[D]. Beijing: China University of Petroleum, 2016. | |
76 | 徐春明, 殷梦凡, 童浩, 等. 离子液体萃取分离石脑油中芳烃的理论计算与试验验证[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 138-145. |
Xu C M, Yin M F, Tong H, et al. Theoretical calculation and experimental verification of aromatics extraction from naphtha by ionic liquids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 138-145. | |
77 | 李国选. 离子液体/低共熔溶剂分离过程强化与预测型分子热力学基础[D]. 北京: 北京化工大学, 2023. |
Li G X. Separation process intensification of ionic liquids/deep eutectic solvents and fundamentals of predictive molecular thermodynamics[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
78 | 高腾飞, 李国选, 雷志刚. 从催化裂化柴油中分离联苯的溶剂筛选:实验和计算热力学[J]. 化工学报, 2022, 73(12): 5314-5323. |
Gao T F, Li G X, Lei Z G. Solvents selection for separation of biphenyl from FCC diesel: experimental and computational thermodynamics[J]. CIESC Journal, 2022, 73(12): 5314-5323. | |
79 | 李欣宇. 含氮杂环类功能化溶剂萃取分离柴油中芳烃/烷烃的研究[D]. 北京: 北京化工大学, 2023. |
Li X Y. Extraction separation of aromatics/alkanes from diesel fuel by nitrogen-containing heterocyclic functionalized solvents[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
80 | Li X Y, Wu X J, Yu H, et al. Highly selective extraction of aromatics from diesel fuel using dual N-containing heterocyclic deep eutectic solvents[J]. Chemical Engineering Journal, 2023, 476: 146618. |
81 | 康晓丽, 孙磊, 吕涯, 等. 选择性萃取用于改善高含蜡柴油馏分低温流动性能的研究[J]. 石油炼制与化工, 2006, 37(12): 17-22. |
Kang X L, Sun L, Lü Y, et al. Improving the low-temperature fluidity of light gas oil with high wax content by solvent extraction[J]. Petroleum Processing and Petrochemicals, 2006, 37(12): 17-22. | |
82 | Bharathiraja R, Ramkumar T, Selvakumar M, et al. Thermal characteristics enhancement of paraffin wax phase change material (PCM) for thermal storage applications[J]. Renewable Energy, 2024, 222: 119986. |
83 | 郭守敬, 白天忠, 梁雪美, 等. 润滑油基础油脱蜡技术研究进展[J]. 当代化工, 2022, 51(6): 1496-1499, 1508. |
Guo S J, Bai T Z, Liang X M, et al. Research progress of lubricant base oil dewaxing technology[J]. Contemporary Chemical Industry, 2022, 51(6): 1496-1499, 1508. | |
84 | 吕涯, 陈淑芬. 热力学模型预测低温下柴油中正构烷烃的析出[J]. 化工进展, 2007, 26(12): 1743-1748. |
Lü Y, Chen S F. Prediction of the settling of n-alkane in diesel by thermodynamic model[J]. Chemical Industry and Engineering Progress, 2007, 26(12): 1743-1748. | |
85 | 吕涯, 孙磊, 康晓丽. 选择性溶剂萃取生产低凝柴油的溶剂筛选和溶剂选择性的表征[J]. 化学世界, 2008, 49(2): 93-97, 106. |
Lü Y, Sun L, Kang X L. Screening of solvent and characterization of selectivity in solvent extraction for production of low freezing point diesel fuel[J]. Chemical World, 2008, 49(2): 93-97, 106. | |
86 | Lü Y, Shi J J, Sun L. Investigation of the selection of extraction solvent for extracting the n-alkane from diesel by means of solubility parameters theory[J]. Journal of Fuel Chemistry and Technology, 2008, 36(3): 297-301. |
87 | 吕涯, 郭婷. 两维新溶解度参数和柴油脱蜡溶剂的选择[J]. 化工学报, 2009, 60(12): 2963-2968. |
Lv Y, Guo T. Two-dimensional solubility parameters and dewaxing solvent selection for diesels[J]. CIESC Journal, 2009, 60(12): 2963-2968. | |
88 | 吕涯, 闫凯, 孙磊. 应用三维溶解度参数球形模型研究柴油中正构烷烃的分离[J]. 华东理工大学学报 (自然科学版), 2010, 36(6): 755-759. |
Lyu Y, Yan K, Sun L. n-Alkanes deposition from diesels by three-dimensional solubility parameters sphere model[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2010, 36(6): 755-759. | |
89 | Wang Y J, Zhao L, Gao M S, et al. Investigation of solvent dewaxing of straight-run diesel: combination of quantum chemical calculations and experimental condition optimization[J]. Fuel, 2024, 358: 130135. |
90 | Li J, Zong Z M, Liu G H, et al. Application of a dual-solvent method in separating paraffin from a shale oil: a combined experimental and DFT study[J]. Industrial & Engineering Chemistry Research, 2019, 58(37): 17507-17513. |
91 | 刘晶, 杨基和, 周永生, 等. 从直馏汽油分级分离正庚烷及甲基环己烷[J]. 常州大学学报 (自然科学版), 2010, 22(3): 34-37. |
Liu J, Yang J H, Zhou Y S, et al. Study of classification separation of n-heptane and methylcyclohexane from the distillate oil[J]. Journal of Changzhou University (Natural Science Edition), 2010, 22(3): 34-37. | |
92 | 张利利. 正己烷-甲基环戊烷萃取精馏分离的研究[D]. 东营: 中国石油大学 (华东), 2020. |
Zhang L L. Study on separation of n-hexane-methylcyclopentane by extractive distillation[D]. Dongying: China University of Petroleum, 2020. | |
93 | 廖晓星, 伍志春, 陈家镛. 混合溶剂抽提甲基环己烷的溶剂性能[J]. 化工冶金, 1999(3): 235-240. |
Liao X X, Wu Z C, Chen J Y. Properlies of mixed solvents for extraction of methyl cyclohexane[J]. Engineering Chemistry & Metallurgy, 1999(3): 235-240. | |
94 | 曹明月. 石脑油中环烷烃组分的萃取分离研究[D]. 上海: 华东理工大学, 2019. |
Cao M Y. Extraction separation of naphthenes from naphtha[D]. Shanghai: East China University of Science and Technology, 2019. | |
95 | Zhang W L, Hou K H, Mi G J, et al. Liquid–liquid equilibria of ternary systems sulfide + octane + solvents at different temperatures[J]. Journal of Chemical & Engineering Data, 2008, 53(10): 2275-2281. |
96 | 李海彬, 章建华, 沈本贤, 等. N,N-二甲基甲酰胺对催化汽油的萃取脱硫[J]. 石化技术与应用, 2008, 26(4): 312-315, 325. |
Li H B, Zhang J H, Shen B X, et al. Desulphurization of FCC gasoline by N,N-dimethylformamide extraction[J]. Petrochemical Technology & Application, 2008, 26(4): 312-315, 325. | |
97 | 陈娜, 张文林, 米冠杰, 等. FCC汽油萃取脱硫过程萃取剂筛选[J]. 化工进展, 2006, 25(11): 1345-1348. |
Chen N, Zhang W L, Mi G J, et al. Evaluation of extraction performance of the solvents for FCC gasoline deep desulfurization[J]. Chemical Industry and Engineering Progress, 2006, 25(11): 1345-1348. | |
98 | 崔盈贤, 唐晓东. 复合萃取剂选择性萃取脱硫研究[J]. 石油与天然气化工, 2005, 34(5): 387-388, 338. |
Cui Y X, Tang X D. Study on selective extraction desulfurization with composite extractant[J]. Chemical Engineering of Oil and Gas, 2005, 34(5): 387-388, 338. | |
99 | 齐元元. 吸附法与萃取法脱除汽油中有机硫的研究[D]. 天津: 天津大学, 2008. |
Qi Y Y. Study on the desulfurization of gasoline by the method of adsorption and extraction[D]. Tianjin: Tianjin University, 2008. | |
100 | 田龙胜, 唐文成. FCC汽油溶剂抽提脱硫的研究[J]. 石油炼制与化工, 2001, 32(9): 7-9. |
Tian L S, Tang W C. Study on desulfurization of FCC gasoline by solvent extraction[J]. Petroleum Processing and Petrochemicals, 2001, 32(9): 7-9. | |
101 | Lee F, Gentry J C, Wytcherley R W, et al. Process of removing sulfur compounds from gasoline: US6551502B1[P]. 2003-04-22. |
102 | 张宇豪, 王永涛, 陈丰, 等. 清洁油品生产中溶剂萃取分离技术的研究进展[J]. 中国科学: 化学, 2018, 48(4): 319-328. |
Zhang Y H, Wang Y T, Chen F, et al. Development of solvent extraction separation process for clean oil production[J]. Scientia Sinica Chimica, 2018, 48(4): 319-328. | |
103 | Peng L J, Wang S X, Wang X X, et al. Liquid-liquid extraction and mechanism exploration for separation of mixture 2,2,3,3-tetrafluoro-1-propanol and water using pyridine-based ionic liquids[J]. Journal of Molecular Liquids, 2022, 360: 119468. |
104 | Li P P, Li Z, Liu S Y, et al. Imidazole/pyridine-based ionic liquids modified metal-organic frameworks for efficient adsorption of Congo red in water[J]. Journal of Molecular Structure, 2024, 1303: 137599. |
105 | Alenzi A F, Alkhaldi K H A E, Al-Jimaz A S, et al. Desulfurization of ternary mixtures of n-paraffins (C12 or C16) + thiophene + two methylimidazolium dicyanamide (DCA)-based ionic liquids[J]. Journal of Ionic Liquids, 2024, 4(1): 100090. |
106 | Sun C, Zhang Y L, Dai Y S, et al. Separation of ethyl acetate and ethanol by imidazole ionic liquids based on mechanism analysis and liquid-liquid equilibrium experiment[J]. Journal of Molecular Liquids, 2023, 371: 121108. |
107 | 王坤, 刘大凡, 何爱珍, 等. 离子液体萃取脱硫的研究[J]. 石油化工, 2010, 39(6): 675-680. |
Wang K, Liu D F, He A Z, et al. Extractive desulfurization of simulative oil with ionic liquids[J]. Petrochemical Technology, 2010, 39(6): 675-680. | |
108 | 张彦琳. 离子液体在柴油脱硫中的应用研究[D]. 北京: 北京化工大学, 2022. |
Zhang Y L. Application of ionic liquid in diesel desulfurization[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
109 | 赵明泽, 赵荣祥, 李秀萍, 等. 氨基酸离子液体氧化-萃取脱硫工艺研究[J]. 石化技术与应用, 2013, 31(5): 384-387. |
Zhao M Z, Zhao R X, Li X P, et al. Study on oxidation-extraction desulfurization process of model oil by amino acid ionic liquid[J]. Petrochemical Technology & Application, 2013, 31(5): 384-387. | |
110 | 张存, 王峰, 潘小玉, 等. 酸性离子液体萃取-氧化模拟油品脱硫研究[J]. 燃料化学学报, 2011, 39(9): 689-693. |
Zhang C, Wang F, Pan X Y, et al. Study on extraction-oxidation desulfurization of model oil by acidic ionic liquid[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9): 689-693. | |
111 | 杨丽娜, 李剑, 王强. 糠醛加助剂精制焦化柴油[J]. 安徽化工, 2004, 30(2): 8-9. |
Yang L N, Li J, Wang Q. To fine the coked diesel by furfural and assistants[J]. Anhui Chemical Industry, 2004, 30(2): 8-9. | |
112 | 刘丹. 面向燃油脱硫脱氮的非卤素型碳正离子基络合试剂的性能研究[D]. 武汉: 武汉工程大学, 2023. |
Liu D. Performance of Non-halogenated carbocation-based complexing reagents for fuel desulfurization and denitrification[D]. Wuhan: Wuhan Institute of Technology, 2023. | |
113 | 胡震, 张利, 于海莲. 三氯化铁络合脱除柴油中碱性氮化物的研究[J]. 无机盐工业, 2010, 42(1): 53-54. |
Hu Z, Zhang L, Yu H L. Study on removing of basic nitrogen compounds from diesel oil with complexant ferric trichloride[J]. Inorganic Chemicals Industry, 2010, 42(1): 53-54. | |
114 | Anantharaj R, Banerjee T. COSMO-RS-based screening of ionic liquids as green solvents in denitrification studies[J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8705-8725. |
115 | 王云芳, 刘伟, 袁倩, 等. 焦化柴油氧化萃取脱氮技术研究[J]. 应用化工, 2011, 40(8): 1430-1433, 1436. |
Wang Y F, Liu W, Yuan Q, et al. Technology of oxidative denitrification combined with extraction for coking diesel[J]. Applied Chemical Industry, 2011, 40(8): 1430-1433, 1436. | |
116 | 孔令照, 李萍, 李建东, 等. 柴油脱除环烷酸精制工艺研究进展[J]. 石油化工高等学校学报, 2004, 17(3): 37-40, 5. |
Kong L Z, Li P, Li J D, et al. Progress on removing naphthenic acids for diesel oil refining[J]. Journal of Petrochemical Universities, 2004, 17(3): 37-40, 5. | |
117 | Kang S S, Kim T H, Cho D W, et al. Continuous extraction of naphthenic acid from low-grade oil using 1,6-hexanediol in an ammonia solution[J]. Fuel, 2023, 332: 126008. |
118 | 唐晓东, 徐荣. 乙醇-水萃取精制直馏柴油的研究[J]. 化学工业与工程, 1997, 14(3): 17-20. |
Tang X D, Xu R. Laboratory research on refinement of straight diesel distillate by extraction with ethanol-water[J]. Chemical Industry and Engineering, 1997, 14(3): 17-20. | |
119 | Najmuddin R A, Abdul Mutalib M I, Shah S N, et al. Liquid-liquid extraction of naphthenic acid using thiocyanate based ionic liquids[J]. Procedia Engineering, 2016, 148: 662-670. |
120 | Nasir Shah S, Kallidanthiyil Chellappan L, Gonfa G, et al. Extraction of naphthenic acid from highly acidic oil using phenolate based ionic liquids[J]. Chemical Engineering Journal, 2016, 284: 487-493. |
121 | 刘利, 谢飚. 煤焦油提酚工艺技术分析与应用[J]. 煤化工, 2014, 42(2): 57-60. |
Liu L, Xie B. Discussion on the technology of extracting phenolic compounds from coal tar[J]. Coal Chemical Industry, 2014, 42(2): 57-60. | |
122 | Wang Y G, Jiang G C, Zhang S J, et al. The application of a modified dissolving model to the separation of major components in low-temperature coal tar[J]. Fuel Processing Technology, 2016, 149: 313-319. |
123 | 刘宸. 二甲基亚砜萃取分离中低温煤焦油机理研究[D]. 北京: 中国矿业大学 (北京), 2022. |
Liu C. Research on the interaction mechanism during medium-and-low temperature coal tar DMSO extraction process[D]. Beijing: China University of Mining & Technology, 2022. | |
124 | 胡发亭, 毛学锋, 赵渊. 煤衍生油溶剂萃取提酚技术试验研究[J]. 现代化工, 2018, 38(8): 81-84. |
Hu F T, Mao X F, Zhao Y. Experimental study on extracting phenols from coal derivative oils[J]. Modern Chemical Industry, 2018, 38(8): 81-84. | |
125 | 赵渊, 毛学锋, 张晓静, 等. 丙三醇水溶液提取煤焦油中酚类化合物试验研究[J]. 洁净煤技术, 2014, 20(4): 55-57, 89. |
Zhao Y, Mao X F, Zhang X J, et al. Preliminary exploration of extracting phenolic compounds in medium and low temperature coal tar by glycerin solution[J]. Clean Coal Technology, 2014, 20(4): 55-57, 89. | |
126 | 刘继东, 刘爽, 吕建华, 等. 从含酚馏分油中萃取酚的溶剂选择及萃取条件研究[J]. 石油与天然气化工, 2017, 46(4): 30-34. |
Liu J D, Liu S, Lyu J H, et al. Study on solvent selection and extraction conditions of extracting phenolic compounds from distillate oil containing phenol[J]. Chemical Engineering of Oil & Gas, 2017, 46(4): 30-34. | |
127 | 乔林. 低温煤焦油中酚类化合物的无碱化提取研究[D]. 青岛: 青岛科技大学, 2019. |
Qiao L. Study on the alkali-free extraction of phenolic compounds from low temperature coal tar[D]. Qingdao: Qingdao University of Science & Technology, 2019. | |
128 | Ma Z H, Li S, Guo C, et al. Application of dual-solvent extraction for separating a low-temperature coal tar: a detailed experimental and quantum chemical study[J]. Fuel, 2023, 334: 126654. |
129 | Xu D M, Wang S X, Zhang T, et al. Extraction and interaction insights for enhanced separation of phenolic compounds from model coal tar using a hydroxyl-functionalized ionic liquid[J]. Chemical Engineering Research and Design, 2022, 178: 567-574. |
130 | Li Y L, Xiong Q, Liu H J, et al. New coupling technology of phenols extraction in coal tar and carbon dioxide capture: modeling, optimization and techno-economic analysis[J]. Fuel, 2024, 357: 130056. |
[1] | Tianyi LI, Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO. Advances in light isotopes separation and catalytic labeling [J]. CIESC Journal, 2024, 75(4): 1284-1301. |
[2] | Zijia ZHANG, Xinyue QIU, Xiang SUN, Zhibin LUO, Haizhong LUO, Gaohong HE, Xuehua RUAN. Progress in molecular structure design for polyimide membrane materials to enhance CO2 permeation ability [J]. CIESC Journal, 2024, 75(4): 1137-1152. |
[3] | Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation [J]. CIESC Journal, 2024, 75(4): 1370-1381. |
[4] | Xiao DONG, Zhishan BAI, Xiaoyong YANG, Wei YIN, Ningpu LIU, Qifan YU. Research and industrial application of coupled impurity removal technology in CHPPO process oxidation liquids [J]. CIESC Journal, 2024, 75(4): 1630-1641. |
[5] | Ying LIU, Fang ZHENG, Qiwei YANG, Zhiguo ZHANG, Qilong REN, Zongbi BAO. Recent progress in adsorption and separation of xylene isomers [J]. CIESC Journal, 2024, 75(4): 1081-1095. |
[6] | Tiantian LYU, Min YUAN, Jiang WANG, Meizhen GAO, Jiahui YANG, Hong XU, Jinxiang DONG, Qi SHI. Preparation of ZTIF based hydrophobic micro-mesoporous carbon and their adsorption and separation performance of 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1642-1654. |
[7] | Binyu MO, Yaxin ZHANG, Guozhen LIU, Gongping LIU, Wanqin JIN. Recent progress of metal-organic framework membranes for mono/divalent ions separation [J]. CIESC Journal, 2024, 75(4): 1183-1197. |
[8] | Kaibo ZHANG, Jiaxin SHEN, Yuxia LI, Peng TAN, Xiaoqin LIU, Linbing SUN. Controllable construction of Cu(Ⅰ) in Y zeolite for adsorptive separation of ethylene/ethane [J]. CIESC Journal, 2024, 75(4): 1607-1615. |
[9] | Lei XING, Shuai GUAN, Minghu JIANG, Lixin ZHAO, Meng CAI, Hailong LIU, Dehai CHEN. Study on structure optimization and performance of downhole gas-liquid hydrocyclone under high gas-liquid ratio [J]. CIESC Journal, 2024, 75(3): 900-913. |
[10] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[11] | Yuting ZHENG, Guandong FANG, Mengbo ZHANG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on micro-chemical rectification and separation technology [J]. CIESC Journal, 2024, 75(1): 47-59. |
[12] | Jiao ZHU, Liping LUAN, Shenzhen CONG, Xinlei LIU. Organic membranes for H2 separation [J]. CIESC Journal, 2024, 75(1): 138-158. |
[13] | Youjia WANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on separation technology of diesel hydrocarbon components [J]. CIESC Journal, 2024, 75(1): 20-32. |
[14] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[15] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||