CIESC Journal ›› 2024, Vol. 75 ›› Issue (7): 2680-2687.DOI: 10.11949/0438-1157.20240135
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Binglin BAI1(), Shen DU1(
), Mingjia LI2, Chuanqi ZHANG2
Received:
2024-01-29
Revised:
2024-05-08
Online:
2024-08-09
Published:
2024-07-25
Contact:
Shen DU
通讯作者:
杜燊
作者简介:
白炳林(1995—),男,博士研究生,765710705@qq.com
基金资助:
CLC Number:
Binglin BAI, Shen DU, Mingjia LI, Chuanqi ZHANG. Optical transmittance and electrical conductivity characteristics of single-walled carbon nanotube films based on water-phase exfoliation method[J]. CIESC Journal, 2024, 75(7): 2680-2687.
白炳林, 杜燊, 李明佳, 张传琪. 基于水相剥离的单壁碳纳米管薄膜透光和导电特性[J]. 化工学报, 2024, 75(7): 2680-2687.
1 | Chen J S, Trerayapiwat K J, Sun L, et al. Long-lived electronic spin qubits in single-walled carbon nanotubes[J]. Nature Communications, 2023, 14(1): 848. |
2 | Kaskela A, Nasibulin A G, Timmermans M Y, et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique[J]. Nano Letters, 2010, 10(11): 4349-4355. |
3 | Kim S I, Lee K W, Bhusan Sahu B, et al. Flexible OLED fabrication with ITO thin film on polymer substrate[J]. Japanese Journal of Applied Physics, 2015, 54(9): 090301. |
4 | Bai B L, Yang X H, Tian R, et al. High-efficiency solar steam generation based on blue brick-graphene inverted cone evaporator[J]. Applied Thermal Engineering, 2019, 163: 114379. |
5 | Zhang B W, Lin H S, Qiu X Y, et al. Spiro-OMeTAD versus PTAA for single-walled carbon nanotubes electrode in perovskite solar cells[J]. Carbon, 2023, 205: 321-327. |
6 | He Z Y, Xiao Z X, Yue H J, et al. Single-walled carbon nanotube film as an efficient conductive network for Si-based anodes[J]. Advanced Functional Materials, 2023, 33(26): 2300094. |
7 | Zhu S, Zhang Z Y, Sheng J, et al. High-quality single-walled carbon nanotube films as current collectors for flexible supercapacitors[J]. Journal of Materials Chemistry A, 2023, 11(24): 12941-12949. |
8 | Park G, Moon H, Shin S, et al. Spatially uniform lithiation enabled by single-walled carbon nanotubes[J]. ACS Energy Letters, 2023, 8(7): 3154-3160. |
9 | Bui C, La Flower G, Paudyal J. Electrochemical sensing of bisphenol A on single-walled carbon nanotube paper electrodes[J]. Electroanalysis, 2023, 35(8): e202200449. |
10 | Wang F T, Yang D H, Li L H, et al. Electronic type and diameter dependence of the intersubband plasmons of single-wall carbon nanotubes[J]. Advanced Functional Materials, 2022, 32(11): 2107489. |
11 | Liu Y, Zhao Z G, Kang L X, et al. Molecular doping modulation and applications of structure-sorted single-walled carbon nanotubes: a review[J]. Small, 2024, 20(3): 2304075. |
12 | Gao J, Wang W Y, Chen L T, et al. Optimizing processes of dispersant concentration and post-treatments for fabricating single-walled carbon nanotube transparent conducting films[J]. Applied Surface Science, 2013, 277: 128-133. |
13 | Tsebro V I, Tonkikh A A, Rybkovskiy D V, et al. Phonon contribution to electrical resistance of acceptor-doped single-wall carbon nanotubes assembled into transparent films[J]. Physical Review B, 2016, 94(24): 245438. |
14 | Sundramoorthy A K, Wang Y C, Gunasekaran S. Low-temperature solution process for preparing flexible transparent carbon nanotube film for use in flexible supercapacitors[J]. Nano Research, 2015, 8(10): 3430-3445. |
15 | Ma W J, Song L, Yang R, et al. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films[J]. Nano Letters, 2007, 7(8): 2307-2311. |
16 | Jiang S, Hou P X, Chen M L, et al. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes[J]. Science Advances, 2018, 4(5): eaap9264. |
17 | Hellstrom S L, Lee H W, Bao Z N. Polymer-assisted direct deposition of uniform carbon nanotube bundle networks for high performance transparent electrodes[J]. ACS Nano, 2009, 3(6): 1423-1430. |
18 | Jang E Y, Kang T J, Im H W, et al. Single-walled carbon-nanotube networks on large-area glass substrate by the dip-coating method[J]. Small, 2008, 4(12): 2255-2261. |
19 | Bai B L, Yang X H, Tian R, et al. A high efficiency solar steam generation system with using residual heat to enhance steam escape[J]. Desalination, 2020, 491: 114382. |
20 | Tenent R C, Barnes T M, Bergeson J D, et al. Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying[J]. Advanced Materials, 2009, 21(31): 3210-3216. |
21 | Wu Z C, Chen Z H, Du X, et al. Transparent, conductive carbon nanotube films[J]. Science, 2004, 305(5688): 1273-1276. |
22 | Hou P X, Yu B, Su Y, et al. Double-wall carbon nanotube transparent conductive films with excellent performance[J]. Journal of Materials Chemistry A, 2014, 2(4): 1159-1164. |
23 | 钱敏. 纳米碳材料的制备及其薄膜透明导电和场发射性能的研究[D]. 上海: 华东师范大学, 2012. |
Qian M. Synthesis of carbon nanomaterials and their applications in transparent conductive films and field emission displays[D]. Shanghai: East China Normal University, 2012. | |
24 | 鲍俊. 石墨烯/银纳米线复合透明电极的制备及其在有机电致发光器件中的应用[D]. 重庆: 重庆大学, 2016. |
Bao J. Preparation and application of the graphene and silver nanowires hybrid transparent electrode for organic electroluminescent devices[D]. Chongqing: Chongqing University, 2016. | |
25 | Wang B W, Jiang S, Zhu Q B, et al. Continuous fabrication of meter-scale single-wall carbon nanotube films and their use in flexible and transparent integrated circuits[J]. Advanced Materials, 2018, 30(32): e1802057. |
26 | Jeon I, Yoon J, Ahn N, et al. Carbon nanotubes versus graphene as flexible transparent electrodes in inverted perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2017, 8(21): 5395-5401. |
27 | Zhou Y, Shimada S, Saito T, et al. Building interconnects in carbon nanotube networks with metal halides for transparent electrodes[J]. Carbon, 2015, 87: 61-69. |
28 | Fukaya N, Kim D Y, Kishimoto S, et al. One-step sub-10 μm patterning of carbon-nanotube thin films for transparent conductor applications[J]. ACS Nano, 2014, 8(4): 3285-3293. |
29 | Anoshkin I V, Nasibulin A G, Tian Y, et al. Hybrid carbon source for single-walled carbon nanotube synthesis by aerosol CVD method[J]. Carbon, 2014, 78: 130-136. |
30 | Kim Y, Chikamatsu M, Azumi R, et al. Industrially feasible approach to transparent, flexible, and conductive carbon nanotube films: cellulose-assisted film deposition followed by solution and photonic processing[J]. Applied Physics Express, 2013, 6(2): 025101. |
31 | 雷沛, 束小文, 刘培元, 等. 氧化铟锡(ITO)薄膜溅射生长及光电性能调控[J]. 表面技术, 2022, 51(8): 100-106. |
Lei P, Shu X W, Liu P Y, et al. Growth and the tunable optical and electrical of sputtered ITO films[J]. Surface Technology, 2022, 51(8): 100-106. |
[1] | Wenxuan ZHOU, Zhen LIU, Fujian ZHANG, Zhongqiang ZHANG. Mechanism of water treatment by high permeability-selectivity time dimension membrane method [J]. CIESC Journal, 2024, 75(7): 2583-2593. |
[2] | Lulu ZHAO, Erjun TANG, Xuteng XING, Shaojie LIU, Xiaomeng CHU, Na HU, Ze ZHANG. Effects of POSS modified graphene oxide in anti-corrosion and hydrophobic properties of coatings [J]. CIESC Journal, 2024, 75(5): 1977-1986. |
[3] | Wenyan ZHANG, Hao LIU, Weilong SONG, Pin ZHAO, Xinhua WANG. Construction and performance evaluation of TFN-FO membranes incorporated with UiO-66 nanoparticles of different sizes [J]. CIESC Journal, 2024, 75(5): 1920-1928. |
[4] | Youming SI, Lingfeng ZHENG, Pengzhong CHEN, Jiangli FAN, Xiaojun PENG. Performance and mechanism of novel antimony oxo cluster photoresist [J]. CIESC Journal, 2024, 75(4): 1705-1717. |
[5] | Xiaoqing YAN, Ying ZHAO, Yuzhe ZHANG, Honghui OU, Qizhong HUANG, Huagui HU, Guidong YANG. Preparation of five-fold twinned copper nanowires@polypyrrole and their electrocatalytic conversion of nitrate to ammonia [J]. CIESC Journal, 2024, 75(4): 1519-1532. |
[6] | Yuwei YANG, Min LI, Zhiying YAO, Qinlin SUN, Yang LIU, Dan GE, Bingbing SUN. Application and prospect of organoids-on-chip in the study of nano-drug delivery systems [J]. CIESC Journal, 2024, 75(4): 1209-1221. |
[7] | Yu CAO, Guohui ZHANG, Ang GAO, Xinyu DU, Jing ZHOU, Yongmao CAI, Xuan YU, Xiaoming YU. Research progress of two-dimensional MXene materials in solar cells and metal-ion batteries [J]. CIESC Journal, 2024, 75(2): 412-428. |
[8] | Yuhua YIN, Can FANG, Qingfeng YI, Guang LI. Impact of different carbon conductive agents on performance of iron-air battery [J]. CIESC Journal, 2024, 75(2): 685-694. |
[9] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[10] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[11] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[12] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[13] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[14] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[15] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 93
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 220
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||