CIESC Journal ›› 2024, Vol. 75 ›› Issue (9): 3083-3093.DOI: 10.11949/0438-1157.20240348
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xinyi LUO(), Qiang XU(
), Yonglu SHE, Tengfei NIE, Liejin GUO(
)
Received:
2024-03-28
Revised:
2024-05-13
Online:
2024-10-10
Published:
2024-09-25
Contact:
Qiang XU, Liejin GUO
通讯作者:
徐强,郭烈锦
作者简介:
罗欣怡(1999—),女,博士研究生,lxy15982992539@stu.xjtu.edu.cn
基金资助:
CLC Number:
Xinyi LUO, Qiang XU, Yonglu SHE, Tengfei NIE, Liejin GUO. Study on bubble dynamic characteristics and mass transfer mechanism in photoelectrochemical water splitting for hydrogen production[J]. CIESC Journal, 2024, 75(9): 3083-3093.
罗欣怡, 徐强, 佘永璐, 聂腾飞, 郭烈锦. 光电分解水制氢气泡动力学特性及其传质机理研究[J]. 化工学报, 2024, 75(9): 3083-3093.
Fig.1 Experimental platform for bubble dynamics and photoelectrochemical synchronous in-situ test in photoelectrochemical water splitting for hydrogen production
实验参数 | 数值 |
---|---|
室温T/K | 293.15 |
大气压p0/kPa | 97 |
实验系统压力p/kPa | 60~97 |
电解液表面张力γ/(N·m-1) | 0.072 |
电解液密度ρL/(kg·m-3) | 1.0664×103 |
电解液运动黏度νL/(m2·s-1) | 10-6 |
激光光斑半径rlaser/nm | 500 |
激光功率W/mW | 8~12 |
外加偏压U(vs饱和Ag/AgCl)/V | 0.2 |
电化学工作站采样频率f/s-1 | 103 |
高速摄像机拍摄帧率v/(帧·s-1) | 103 |
高速摄像机分辨率 | 512×512 |
显微镜放大倍率 | 12.5 |
Table 1 Parameter settings for single bubble dynamics experiment
实验参数 | 数值 |
---|---|
室温T/K | 293.15 |
大气压p0/kPa | 97 |
实验系统压力p/kPa | 60~97 |
电解液表面张力γ/(N·m-1) | 0.072 |
电解液密度ρL/(kg·m-3) | 1.0664×103 |
电解液运动黏度νL/(m2·s-1) | 10-6 |
激光光斑半径rlaser/nm | 500 |
激光功率W/mW | 8~12 |
外加偏压U(vs饱和Ag/AgCl)/V | 0.2 |
电化学工作站采样频率f/s-1 | 103 |
高速摄像机拍摄帧率v/(帧·s-1) | 103 |
高速摄像机分辨率 | 512×512 |
显微镜放大倍率 | 12.5 |
1 | Wolcott A, Smith W A, Kuykendall T R, et al. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays[J]. Small, 2009, 5(1): 104-111. |
2 | 郭烈锦, 曹振山, 王晔春, 等. 太阳能光催化分解水气泡动力学研究进展[J]. 西安交通大学学报, 2023, 57(3): 1-22. |
Guo L J, Cao Z S, Wang Y C, et al. Review of bubble dynamics in solar photocatalytic water splitting[J]. Journal of Xi’an Jiaotong University, 2023, 57(3): 1-22. | |
3 | Swiegers G F, Terrett R N L, Tsekouras G, et al. The prospects of developing a highly energy-efficient water electrolyser by eliminating or mitigating bubble effects[J]. Sustainable Energy & Fuels, 2021, 5(5): 1280-1310. |
4 | Pinaud B A, Benck J D, Seitz L C, et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry[J]. Energy & Environmental Science, 2013, 6(7): 1983-2002. |
5 | Maeda K, Domen K. Photocatalytic water splitting: recent progress and future challenges[J]. The Journal of Physical Chemistry Letters, 2010, 1(18): 2655-2661. |
6 | Luo X Y, Xu Q, Nie T F, et al. Influence of subatmospheric pressure on bubble evolution on the TiO2 photoelectrode surface[J]. Physical Chemistry Chemical Physics, 2023, 25(23): 16086-16104. |
7 | Cao Z S, Wang Y C, Xu Q, et al. Visualization of bubble dynamic behaviors during photoelectrochemical water splitting with TiO2 photoelectrode[J]. Electrochimica Acta, 2020, 347: 136230. |
8 | Wang M S, Nie T F, She Y L, et al. Study on the behavior of single oxygen bubble regulated by salt concentration in photoelectrochemical water splitting[J]. International Journal of Hydrogen Energy, 2023, 48(61): 23387-23401. |
9 | Lu X L, Nie T F, Li X P, et al. Insight into pH-controlled bubble dynamics on a Pt electrode during electrochemical water splitting[J]. Physics of Fluids, 2023, 35(10): 103314. |
10 | Nie T F, Xu Q, She Y L, et al. The behavior of surface nanobubbles on different substrates in electrochemistry[J]. Journal of Molecular Liquids, 2024, 394: 123791. |
11 | She Y L, Xu Q, Nie T F, et al. In situ investigation of oxygen bubble evolution at photoanode surface affected by reaction temperature[J]. The Journal of Physical Chemistry C, 2023, 127(29): 14197-14210. |
12 | Sielaff A, Dietl J, Herbert S, et al. The influence of system pressure on bubble coalescence in nucleate boiling[J]. Heat Transfer Engineering, 2014, 35(5): 420-429. |
13 | Matsushima H, Iida T, Fukunaka Y. Observation of bubble layer formed on hydrogen and oxygen gas-evolving electrode in a magnetic field[J]. Journal of Solid State Electrochemistry, 2012, 16(2): 617-623. |
14 | Timmermann J, Hoffmann M, Schlüter M. Influence of bubble bouncing on mass transfer and chemical reaction[J]. Chemical Engineering & Technology, 2016, 39(10): 1955-1962. |
15 | Vogt H, Stephan K. Local microprocesses at gas-evolving electrodes and their influence on mass transfer[J]. Electrochimica Acta, 2015, 155: 348-356. |
16 | Guo L J, Chen Y B, Su J Z, et al. Obstacles of solar-powered photocatalytic water splitting for hydrogen production: a perspective from energy flow and mass flow[J]. Energy, 2019, 172: 1079-1086. |
17 | Jianu O A, Rosen M A, Naterer G F, et al. Two-phase bubble flow and convective mass transfer in water splitting processes[J]. International Journal of Hydrogen Energy, 2015, 40(11): 4047-4055. |
18 | Cao Z S, Zhang B, Feng Y Y, et al. Mass transfer mechanism during bubble evolution on the surface of photoelectrode[J]. Electrochimica Acta, 2022, 434: 141293. |
19 | Wang M S, Xu Q, Nie T F, et al. Growth characteristics and the mass transfer mechanism of single bubble on a photoelectrode at different electrolyte concentrations[J]. Physical Chemistry Chemical Physics, 2023, 25(41): 28497-28509. |
20 | 韩宁宁, 许壮, 何广利. 电解水制高压氢气——技术挑战与研究进展[J]. 储能科学与技术, 2024, 13(2): 626-633. |
Han N N, Xu Z, He G L. Pressurized water electrolysis—Challenge and recent progress[J]. Energy Storage Science and Technology, 2024, 13(2): 626-633. | |
21 | Fujishima A, Zhang X T, Tryk D. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63(12): 515-582. |
22 | van der Linde P, Peñas-López P, Moreno Soto Á, et al. Gas bubble evolution on microstructured silicon substrates[J]. Energy & Environmental Science, 2018, 11(12): 3452-3462. |
23 | Brandon N P, Kelsall G H. Growth kinetics of bubbles electrogenerated at microelectrodes[J]. Journal of Applied Electrochemistry, 1985, 15(4): 475-484. |
24 | Lu X L, Nie T F, Yadav D, et al. Enhancing hydrogen bubble release from a microelectrode through precise tuning of Marangoni forces with nonionic surfactant[J]. Physics of Fluids, 2024, 36(1): 013335. |
25 | Matsushima H, Kiuchi D, Fukunaka Y, et al. Single bubble growth during water electrolysis under microgravity[J]. Electrochemistry Communications, 2009, 11(8): 1721-1723. |
26 | Robinson A J, Judd R L. The dynamics of spherical bubble growth[J]. International Journal of Heat and Mass Transfer, 2004, 47(23): 5101-5113. |
27 | Scriven L E. On the dynamics of phase growth[J]. Chemical Engineering Science, 1959, 10(1/2): 1-13. |
28 | Hu X W, Wang Y C, Guo L J, et al. Diffusion-controlled growth of oxygen bubble evolved from nanorod-array TiO2 photoelectrode[J]. Advances in Condensed Matter Physics, 2014, 2014: 970891. |
29 | Liu H B, Pan L M, Wen J. Numerical simulation of hydrogen bubble growth at an electrode surface[J]. The Canadian Journal of Chemical Engineering, 2016, 94(1): 192-199. |
30 | Hu X W, Cao Z S, Wang Y C, et al. Single photogenerated bubble at gas-evolving TiO2 nanorod-array electrode[J]. Electrochimica Acta, 2016, 202: 175-185. |
31 | Nie T F, Li Z Q, Luo X Y, et al. Single bubble dynamics on a TiO2 photoelectrode surface during photoelectrochemical water splitting[J]. Electrochimica Acta, 2022, 436: 141394. |
32 | Bernardin J D, Mudawar I, Walsh C B, et al. Contact angle temperature dependence for water droplets on practical aluminum surfaces[J]. International Journal of Heat and Mass Transfer, 1997, 40(5): 1017-1033. |
33 | Lax M. Temperature rise induced by a laser beam[J]. Journal of Applied Physics, 1977, 48(9): 3919-3924. |
34 | Mun J, Kim S W, Kato R, et al. Measurement of the thermal conductivity of TiO2 thin films by using the thermo-reflectance method[J]. Thermochimica Acta, 2007, 455(1/2): 55-59. |
35 | Brian P L T. Effect of Gibbs adsorption on Marangoni instability[J]. AIChE Journal, 1971, 17(4): 765-772. |
36 | Hardy S C. The motion of bubbles in a vertical temperature gradient[J]. Journal of Colloid and Interface Science, 1979, 69(1): 157-162. |
37 | Lubetkin S. Thermal Marangoni effects on gas bubbles are generally accompanied by solutal Marangoni effects [J]. Langmuir, 2003, 19(26): 10774-10778. |
38 | Lubetkin S. The motion of electrolytic gas bubbles near electrodes[J]. Electrochimica Acta, 2002, 48(4): 357-375. |
39 | Luo X Y, Xu Q, Ye X M, et al. Mass transfer mechanism of single bubble evolution on TiO2 electrode surface under decreased pressure[J]. International Journal of Hydrogen Energy, 2024, 61: 859-872. |
40 | Ye X M, Xu Q, Nie T F, et al. Study on bubble dynamics in photoelectrochemical water splitting with low-rate flow fields[J]. The Journal of Physical Chemistry C, 2023, 127(45): 22085-22096. |
41 | Vogt H. The concentration overpotential of gas evolving electrodes as a multiple problem of mass transfer[J]. Journal of the Electrochemical Society, 1990, 137(4): 1179-1184. |
42 | Vogt H. Interfacial supersaturation at gas evolving electrodes[J]. Journal of Applied Electrochemistry, 1993, 23(12): 1323-1325. |
43 | Vogt H. On the gas-evolution efficiency of electrodes(Ⅱ): Numerical analysis[J]. Electrochimica Acta, 2011, 56(5): 2404-2410. |
44 | Vogt H. The role of single-phase free convection in mass transfer at gas evolving electrodes (Ⅰ): Theoretical[J]. Electrochimica Acta, 1993, 38(10): 1421-1426. |
45 | Reddy Karri S B. Dynamics of bubble departure in micro-gravity[J]. Chemical Engineering Communications, 1988, 70(1): 127-135. |
46 | Siegel R, Keshock E G. Effects of reduced gravity on nucleate boiling bubble dynamics in saturated water[J]. AIChE Journal, 1964, 10(4): 509-517. |
47 | Beer H, Borrow P, Best R. Nucleate Boiling, Bubble Growth and Dynamics. Heat Transfer in Boiling[M]. New York: Academic Press, 1977: 21-52. |
48 | Fritz W. Berechnung des maximalvolume von dampfblasen[J]. Physik Zeitschr, 1935, 36: 379-384. |
49 | Chen J W, Guo L J, Hu X W, et al. Dynamics of single bubble departure from TiO2 nanorod-array photoelectrode[J]. Electrochimica Acta, 2018, 274: 57-66. |
50 | Stephan K, Vogt H. A model for correlating mass transfer data at gas evolving electrodes[J]. Electrochimica Acta, 1979, 24(1): 11-18. |
51 | Colombet D, Legendre D, Tuttlies U, et al. On single bubble mass transfer in a volatile liquid[J]. International Journal of Heat and Mass Transfer, 2018, 125: 1144-1155. |
52 | Vogt H. The role of single-phase free convection in mass transfer at gas evolving electrodes (Ⅱ): Experimental verification[J]. Electrochimica Acta, 1993, 38(10): 1427-1431. |
53 | Lochiel A C, Calderbank P H. Mass transfer in the continuous phase around axisymmetric bodies of revolution[J]. Chemical Engineering Science, 1964, 19(7): 471-484. |
[1] | Junfeng WANG, Junjie ZHANG, Wei ZHANG, Jiale WANG, Shuyan SHUANG, Yadong ZHANG. Liquid-phase discharge plasma decomposition of methanol for hydrogen production: optimization of electrode configuration [J]. CIESC Journal, 2024, 75(9): 3277-3286. |
[2] | Zichi YANG, Bingqi XIE, Ruixin SHI, Hong LEI, Chen CHEN, Caijin ZHOU, Jisong ZHANG. Research progress on efficient and safe gas-liquid mass transfer and reaction processes in tube-in-tube reactor [J]. CIESC Journal, 2024, 75(9): 3011-3027. |
[3] | Ran WANG, Huan WANG, Xiaoyun XIONG, Huimin GUAN, Yunfeng ZHENG, Cailin CHEN, Yucai QIN, Lijuan SONG. Visual analysis of mass transfer enhanced active site utilization efficiency of FCC catalyst [J]. CIESC Journal, 2024, 75(9): 3198-3209. |
[4] | Hao TANG, Dinghua HU, Qiang LI, Xuanchang ZHANG, Junjie HAN. Numerical and visualization study on dynamic behavior of bubbles in anti-acceleration double tangent arc channel [J]. CIESC Journal, 2024, 75(9): 3074-3082. |
[5] | Zhenghang LUO, Jingyu LI, Weixiong CHEN, Daotong CHONG, Junjie YAN. Numerical simulation of heat transfer characteristic and bubble force analysis of low flow rate vapor condensation under rolling motion [J]. CIESC Journal, 2024, 75(8): 2800-2811. |
[6] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
[7] | Jiaqi DING, Haitao LIU, Pu ZHAO, Xiangning ZHU, Xiaofang WANG, Rong XIE. Study on intelligent rolling prediction of the multiphase flows in coal-supercritical water fluidized bed reactor for hydrogen production [J]. CIESC Journal, 2024, 75(8): 2886-2896. |
[8] | Yongqi TONG, Jie CHENG, Hai LIN, Xi CHEN, Haibo ZHAO. CPFD simulation of a 10 MWth chemical looping combustion reactor [J]. CIESC Journal, 2024, 75(8): 2949-2959. |
[9] | Xiaoyuan ZHENG, Yanlin CAI, Zhi YING, Bo WANG, Binlin DOU. Phosphorus transformation during subcritical hydrothermal conversion of sewage sludge [J]. CIESC Journal, 2024, 75(8): 2970-2982. |
[10] | Kehao DONG, Jingzhi ZHOU, Feng ZHOU, Haijia CHEN, Xiulan HUAI, Dong LI. Experiment of gas flow pressure drop under complex boundary conditions in ultra-thin space [J]. CIESC Journal, 2024, 75(7): 2505-2521. |
[11] | Jinrui YANG, Hongfei ZHENG, Xinglong MA, Rihui JIN, Shen LIANG. Study on two-stage stacked humidification-dehumidification desalination device [J]. CIESC Journal, 2024, 75(7): 2446-2454. |
[12] | Banghan WU, Dingbiao LIN, Haifeng LU, Xiaolei GUO, Haifeng LIU. Pipe pressure drop and transfer bottle conveying characteristics in vertical pipe pneumatic logistics transmission system [J]. CIESC Journal, 2024, 75(7): 2465-2473. |
[13] | He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems [J]. CIESC Journal, 2024, 75(6): 2180-2189. |
[14] | Chaoyang GUAN, Guoqing HUANG, Yinan ZHANG, Hongxia CHEN, Xiaoze DU. Experimental study on enhancement of flow boiling through degassing with copper foam [J]. CIESC Journal, 2024, 75(5): 1765-1776. |
[15] | Wei WANG, Xu BAI, Xiang ZHAO, Xueliang MA, Wei LIN, Jiuyang YU. Optimization of air flotation cyclone separation conditions based on response surface methodology [J]. CIESC Journal, 2024, 75(5): 1929-1938. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||