CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4702-4711.DOI: 10.11949/0438-1157.20240276
• Biochemical engineering and technology • Previous Articles Next Articles
Zhidong MA1(), Yapeng ZHANG2, Huipeng GAO3, Wenqiang LI4, Bo LYU2, Lei QIN4, Quan ZHANG3(
), Chun LI1,2,4(
)
Received:
2024-03-07
Revised:
2024-08-08
Online:
2025-01-03
Published:
2024-12-25
Contact:
Quan ZHANG, Chun LI
马治东1(), 张亚鹏2, 高慧鹏3, 李文强4, 吕波2, 秦磊4, 张全3(
), 李春1,2,4(
)
通讯作者:
张全,李春
作者简介:
马治东(2000—),男,硕士研究生,zhidong_mashz@163.com
基金资助:
CLC Number:
Zhidong MA, Yapeng ZHANG, Huipeng GAO, Wenqiang LI, Bo LYU, Lei QIN, Quan ZHANG, Chun LI. Optimization of biomanufacturing process of high-energy fuel precursor α-bisabolene[J]. CIESC Journal, 2024, 75(12): 4702-4711.
马治东, 张亚鹏, 高慧鹏, 李文强, 吕波, 秦磊, 张全, 李春. 高能燃料前体α-红没药烯的生物制造过程优化[J]. 化工学报, 2024, 75(12): 4702-4711.
质粒/菌株 | 基因型 | 来源 | |
---|---|---|---|
酿酒酵母 | S59 | CEN.PK2-1D, ΔGal80:: P Gal10 -IDI1 (L141H,Y195F,W356C )-T PGI1, P Gal1-tHMG1-T CYC3 | 课题组构建 |
BS-GbTPS | S59, ΔYPRCtau3:: P Gal1 -GbTPS-T PGK1 -LEU2 | 本研究构建 | |
BS-PaTPS5 | S59, ΔYPRCtau3:: P Gal1 -PaTPS5-T PGK1 -LEU2 | 本研究构建 | |
BS-NvTPS | S59, ΔYPRCtau3:: P Gal1 -NvTPS-T PGK1 -LEU2 | 本研究构建 | |
BS-RcTPS | S59, ΔYPRCtau3:: P Gal1 -RcTPS-T PGK1 -LEU2 | 本研究构建 | |
BS1 | S59, ΔYPRCtau3:: P Gal1 -AgBIS-T PGK1 -LEU2 | 本研究构建 | |
BS2 | BS1, ΔERG9:: P HXT1 -ERG9-T ERG9 -HIS3 | 本研究构建 | |
BS3 | BS2, ΔACC1::P HXT1 -ACC1-T ACC1 | 本研究构建 | |
BS9 | BS3, ΔLPP1, ΔDPP1:: P Gal1 -UPC2-1-T GPD1 | 本研究构建 | |
BS11 | BS3, Δ308a:: P Gal1 -ERG8-T PRC1 -P Gal10 -ERG19-T EFM1 | 本研究构建 | |
BS11-174 | BS11, ΔGRE3:: PTEF1 -t17POS5-T CPS1 -TRP1 | 本研究构建 | |
BS11-A22 | BS11, ΔGDH1:: P TEF1-GDH2-T PGK1 | 本研究构建 | |
BS13 | BS11, Δ1622b::P Gal1 -ERG20-T RPL41 -P Gal10 -ERG13-T RPL3 | 本研究构建 | |
BS14 | BS13, ΔURA3::P Gal1 -ERG12-T EBS1 -P Gal10 -ERG10-T NAT1 | 本研究构建 | |
BS17-A1 | BS14, ΔGRE3::P TEF1 -t17POS5-T CPS1 -TRP1, Δ911b::P Gal2 -ADH2-T MRP49 | 本研究构建 | |
BS17-A2 | BS17-A1, Δyprcdelta15::P Gal1 -ACS1-T ADH1 -P Gal10-ERG10-T VMA2 | 本研究构建 | |
质粒 | A1 | pUC19, ΔYPRCtau3:: P Gal1 -GbTPS-T PGK1 -LEU2 | 本研究构建 |
A2 | pUC19, ΔYPRCtau3:: P Gal1 -PaTPS5-T PGK1 -LEU2 | 本研究构建 | |
A3 | pUC19, ΔYPRCtau3:: P Gal1 -NvTPS-T PGK1 -LEU2 | 本研究构建 | |
A4 | pUC19, ΔYPRCtau3:: P Gal1 -RcTPS-T PGK1 -LEU2 | 本研究构建 | |
A5 | pUC19, ΔYPRCtau3:: P Gal1 -AgBIS-T PGK1 -LEU2 | 本研究构建 | |
A8 | pUC19, ΔERG9:: P HXT1 -ERG9-T ERG9 -HIS3 | 课题组构建 | |
A9 | pUC19, ΔACC1:: P HXT1 -ACC1-T ACC1 | 本研究构建 | |
A11 | pUC19, Δ308a::P Gal1 -ERG8-T PRC1 -P Gal10 -ERG19-T EFM1 | 课题组构建 | |
A12 | pUC19, Δ1622b::P Gal1 -ERG20-T RPL41 -P Gal10 -ERG13-T RPL3 | 课题组构建 | |
A13 | pUC19, ΔURA3::P Gal1 -ERG12-T EBS1 -P Gal10 -ERG10-T NAT1 | 课题组构建 | |
A14 | pUC19, ΔGDH1::P TEF1-GDH2-T PGK1 | 本研究构建 | |
A15 | pUC19, ΔGRE3::P TEF1 -t17POS5-T CPS1 -TRP1 | 课题组构建 | |
A16 | pUC19, Δyprcdelta15::P Gal1 -ACS1-T ADH1 -P Gal10 -ERG10-T VMA2 | 课题组构建 | |
A17 | pUC19,Δ911b::P Gal2 -ADH2-T MRP49 | 本研究构建 | |
A18 | pUC19,ΔDPP1::P Gal1 -UPC2-1-T GPD1 | 本研究构建 |
Table 1 Plasmids and yeast strains involved in this study
质粒/菌株 | 基因型 | 来源 | |
---|---|---|---|
酿酒酵母 | S59 | CEN.PK2-1D, ΔGal80:: P Gal10 -IDI1 (L141H,Y195F,W356C )-T PGI1, P Gal1-tHMG1-T CYC3 | 课题组构建 |
BS-GbTPS | S59, ΔYPRCtau3:: P Gal1 -GbTPS-T PGK1 -LEU2 | 本研究构建 | |
BS-PaTPS5 | S59, ΔYPRCtau3:: P Gal1 -PaTPS5-T PGK1 -LEU2 | 本研究构建 | |
BS-NvTPS | S59, ΔYPRCtau3:: P Gal1 -NvTPS-T PGK1 -LEU2 | 本研究构建 | |
BS-RcTPS | S59, ΔYPRCtau3:: P Gal1 -RcTPS-T PGK1 -LEU2 | 本研究构建 | |
BS1 | S59, ΔYPRCtau3:: P Gal1 -AgBIS-T PGK1 -LEU2 | 本研究构建 | |
BS2 | BS1, ΔERG9:: P HXT1 -ERG9-T ERG9 -HIS3 | 本研究构建 | |
BS3 | BS2, ΔACC1::P HXT1 -ACC1-T ACC1 | 本研究构建 | |
BS9 | BS3, ΔLPP1, ΔDPP1:: P Gal1 -UPC2-1-T GPD1 | 本研究构建 | |
BS11 | BS3, Δ308a:: P Gal1 -ERG8-T PRC1 -P Gal10 -ERG19-T EFM1 | 本研究构建 | |
BS11-174 | BS11, ΔGRE3:: PTEF1 -t17POS5-T CPS1 -TRP1 | 本研究构建 | |
BS11-A22 | BS11, ΔGDH1:: P TEF1-GDH2-T PGK1 | 本研究构建 | |
BS13 | BS11, Δ1622b::P Gal1 -ERG20-T RPL41 -P Gal10 -ERG13-T RPL3 | 本研究构建 | |
BS14 | BS13, ΔURA3::P Gal1 -ERG12-T EBS1 -P Gal10 -ERG10-T NAT1 | 本研究构建 | |
BS17-A1 | BS14, ΔGRE3::P TEF1 -t17POS5-T CPS1 -TRP1, Δ911b::P Gal2 -ADH2-T MRP49 | 本研究构建 | |
BS17-A2 | BS17-A1, Δyprcdelta15::P Gal1 -ACS1-T ADH1 -P Gal10-ERG10-T VMA2 | 本研究构建 | |
质粒 | A1 | pUC19, ΔYPRCtau3:: P Gal1 -GbTPS-T PGK1 -LEU2 | 本研究构建 |
A2 | pUC19, ΔYPRCtau3:: P Gal1 -PaTPS5-T PGK1 -LEU2 | 本研究构建 | |
A3 | pUC19, ΔYPRCtau3:: P Gal1 -NvTPS-T PGK1 -LEU2 | 本研究构建 | |
A4 | pUC19, ΔYPRCtau3:: P Gal1 -RcTPS-T PGK1 -LEU2 | 本研究构建 | |
A5 | pUC19, ΔYPRCtau3:: P Gal1 -AgBIS-T PGK1 -LEU2 | 本研究构建 | |
A8 | pUC19, ΔERG9:: P HXT1 -ERG9-T ERG9 -HIS3 | 课题组构建 | |
A9 | pUC19, ΔACC1:: P HXT1 -ACC1-T ACC1 | 本研究构建 | |
A11 | pUC19, Δ308a::P Gal1 -ERG8-T PRC1 -P Gal10 -ERG19-T EFM1 | 课题组构建 | |
A12 | pUC19, Δ1622b::P Gal1 -ERG20-T RPL41 -P Gal10 -ERG13-T RPL3 | 课题组构建 | |
A13 | pUC19, ΔURA3::P Gal1 -ERG12-T EBS1 -P Gal10 -ERG10-T NAT1 | 课题组构建 | |
A14 | pUC19, ΔGDH1::P TEF1-GDH2-T PGK1 | 本研究构建 | |
A15 | pUC19, ΔGRE3::P TEF1 -t17POS5-T CPS1 -TRP1 | 课题组构建 | |
A16 | pUC19, Δyprcdelta15::P Gal1 -ACS1-T ADH1 -P Gal10 -ERG10-T VMA2 | 课题组构建 | |
A17 | pUC19,Δ911b::P Gal2 -ADH2-T MRP49 | 本研究构建 | |
A18 | pUC19,ΔDPP1::P Gal1 -UPC2-1-T GPD1 | 本研究构建 |
引物 | 序列(5′-3′) |
---|---|
P Gal1 -AgBIS-F1 | GAAAAAACTATAATGGCTGGTGTTTCTGCTG |
T PGK1 - AgBIS-R1 | GGAAAGCTTTTACAATGGCAATGGTTCGATCAAAC |
AgBIS-T PGK1 -F1 | CCATTGTAAAAGCTTTCCCATGTCTCTACTGG |
T PGK1 -R1 | AACGAACGCAGAATTTTCGAG |
P HXT1 -F1 | GGTTCAAGCAGAAGAGACAACAATTG |
P HXT1 -ACC1-R1 | AAGCTTTCTTCGCTCATGATTTTACGTATATCAACTAGTTGACGATTATG |
ACC1-F1 | ATGAGCGAAGAAAGCTTATTCGAG |
ACC1-R1 | GATGACTTTCCTCTTAGACTGGGAC |
P HXT1 -FAS1-R1 | GTGGAGTAAGCGTCCATGATTTTACGTATATCAACTAGTTGACG |
FAS1-F1 | ATGGACGCTTACTCCACAAG |
FAS1-R1 | GATATAGATCACGCAATTCTTCAAAGTAG |
GDH1L-P TEF1 -F1 | GAGACCAAAAAGAAAAAGAAGACATGGAGGCCCAGAATAC |
GDH2-P TEF1 -R1 | GATTTTTGTTATCAAAAAGCATGGTTGTTTATGTTCGGATGTGATG |
GDH2-F1 | ATGCTTTTTGATAACAAAAATCGCGGTG |
GDH2-R1 | TCAAGCACTTGCCTCCGCTTC |
GDH2-T PGK1 -F1 | GGAGGCAAGTGCTTGAAAGCTTTCCCATGTCTCTACTG |
T PGK1 -R1 | AACGAACGCAGAATTTTCGAG |
ADH2-F1 | ATGTCTATTCCAGAAACTCAAAAAGC |
ADH2-R1 | CAAACTTATCGAGAGAAAGCTTATTTAGAAGTGTCAACAACGTATCTACC |
Table 2 Primers used in this study
引物 | 序列(5′-3′) |
---|---|
P Gal1 -AgBIS-F1 | GAAAAAACTATAATGGCTGGTGTTTCTGCTG |
T PGK1 - AgBIS-R1 | GGAAAGCTTTTACAATGGCAATGGTTCGATCAAAC |
AgBIS-T PGK1 -F1 | CCATTGTAAAAGCTTTCCCATGTCTCTACTGG |
T PGK1 -R1 | AACGAACGCAGAATTTTCGAG |
P HXT1 -F1 | GGTTCAAGCAGAAGAGACAACAATTG |
P HXT1 -ACC1-R1 | AAGCTTTCTTCGCTCATGATTTTACGTATATCAACTAGTTGACGATTATG |
ACC1-F1 | ATGAGCGAAGAAAGCTTATTCGAG |
ACC1-R1 | GATGACTTTCCTCTTAGACTGGGAC |
P HXT1 -FAS1-R1 | GTGGAGTAAGCGTCCATGATTTTACGTATATCAACTAGTTGACG |
FAS1-F1 | ATGGACGCTTACTCCACAAG |
FAS1-R1 | GATATAGATCACGCAATTCTTCAAAGTAG |
GDH1L-P TEF1 -F1 | GAGACCAAAAAGAAAAAGAAGACATGGAGGCCCAGAATAC |
GDH2-P TEF1 -R1 | GATTTTTGTTATCAAAAAGCATGGTTGTTTATGTTCGGATGTGATG |
GDH2-F1 | ATGCTTTTTGATAACAAAAATCGCGGTG |
GDH2-R1 | TCAAGCACTTGCCTCCGCTTC |
GDH2-T PGK1 -F1 | GGAGGCAAGTGCTTGAAAGCTTTCCCATGTCTCTACTG |
T PGK1 -R1 | AACGAACGCAGAATTTTCGAG |
ADH2-F1 | ATGTCTATTCCAGAAACTCAAAAAGC |
ADH2-R1 | CAAACTTATCGAGAGAAAGCTTATTTAGAAGTGTCAACAACGTATCTACC |
1 | Zhao Y K, Zhu K, Li J, et al. High-efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica [J]. Microbial Biotechnology, 2021, 14(6): 2497-2513. |
2 | Yeo S K, Ali A Y, Hayward O A, et al. β-bisabolene, a sesquiterpene from the essential oil extract of opoponax (Commiphora guidottii), exhibits cytotoxicity in breast cancer cell lines[J]. Phytotherapy Research, 2016, 30(3): 418-425. |
3 | Jou Y J, Hua C H, Lin C S, et al. Anticancer activity of γ-bisabolene in human neuroblastoma cells via induction of p53-mediated mitochondrial apoptosis[J]. Molecules, 2016, 21(5): 601. |
4 | Peralta-Yahya P P, Ouellet M, Chan R, et al. Identification and microbial production of a terpene-based advanced biofuel[J]. Nature Communications, 2011, 2: 483. |
5 | Baral N R, Kavvada O, Mendez-Perez D, et al. Techno-economic analysis and life-cycle greenhouse gas mitigation cost of five routes to bio-jet fuel blendstocks[J]. Energy & Environmental Science, 2019, 12(3): 807-824. |
6 | Wang P P, Wei W, Ye W, et al. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency[J]. Cell Discovery, 2019, 5: 5. |
7 | Liu C L, Xue K, Yang Y K, et al. Metabolic engineering strategies for sesquiterpene production in microorganism[J]. Critical Reviews in Biotechnology, 2022, 42(1): 73-92. |
8 | Meadows A L, Hawkins K M, Tsegaye Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production[J]. Nature, 2016, 537(7622): 694-697. |
9 | Westfall P J, Pitera D J, Lenihan J R, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): E111-E118. |
10 | Zhang Y, Song X H, Lai Y M, et al. High-yielding terpene-based biofuel production in Rhodobacter capsulatus [J]. ACS Synthetic Biology, 2021, 10(6): 1545-1552. |
11 | Özaydın B, Burd H, Lee T S, et al. Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production[J]. Metabolic Engineering, 2013, 15: 174-183. |
12 | Zhao B X, Zhang Y H, Wang Y P, et al. Biosynthesis of α-bisabolene from low-cost renewable feedstocks by peroxisome engineering and systems metabolic engineering of the yeast Yarrowia lipolytica [J]. Green Chemistry, 2023, 25(20): 8145-8159. |
13 | Zhang Y P, Wang J, Wang Z B, et al. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae [J]. Nature Communications, 2019, 10(1): 1053. |
14 | Gietz R D, Schiestl R H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method[J]. Nature Protocols, 2007, 2(1): 31-34. |
15 | Chen H L, Li M J, Liu C Q, et al. Enhancement of the catalytic activity of isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis[J]. Microbial Cell Factories, 2018, 17(1): 65. |
16 | Donald K A, Hampton R Y, Fritz I B. Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology, 1997, 63(9): 3341-3344. |
17 | Bohlmann J, Crock J, Jetter R, et al. Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis)[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(12): 6756-6761. |
18 | Parveen I, Wang M, Zhao J P, et al. Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E, E)-farnesol and α-bisabolene synthases[J]. Plant Molecular Biology, 2015, 89(4/5): 451-462. |
19 | Mafu S, Karunanithi P S, Palazzo T A, et al. Biosynthesis of the microtubule-destabilizing diterpene pseudolaric acid B from golden larch involves an unusual diterpene synthase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 974-979. |
20 | Lancaster J, Lehner B, Khrimian A, et al. An IDS-type sesquiterpene synthase produces the pheromone precursor (Z)- α-bisabolene in Nezara viridula [J]. Journal of Chemical Ecology, 2019, 45(2): 187-197. |
21 | Chan A P, Crabtree J, Zhao Q, et al. Draft genome sequence of the oilseed species Ricinus communis [J]. Nature Biotechnology, 2010, 28(9): 951-956. |
22 | Yuan J F, Ching C B. Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2015, 14: 38. |
23 | Xie W P, Ye L D, Lv X M, et al. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2015, 28: 8-18. |
24 | Dusséaux S, Wajn W T, Liu Y X, et al. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(50): 31789-31799. |
25 | Yu T, Zhou Y J, Huang M T, et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis[J]. Cell, 2018, 174(6): 1549-1558.e14. |
26 | Davies B S J, Wang H S, Rine J. Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae: similar activation/regulatory domains but different response mechanisms[J]. Molecular and Cellular Biology, 2005, 25(16): 7375-7385. |
27 | Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943. |
28 | van Rossum H M, Kozak B U, Pronk J T, et al. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: pathway stoichiometry, free-energy conservation and redox-cofactor balancing[J]. Metabolic Engineering, 2016, 36: 99-115. |
29 | 张鸿伟, 王鹏超. 微生物辅因子工程研究进展[J]. 中国生物工程杂志, 2023, 43(4): 112-122. |
Zhang H W, Wang P C. Research progress of microbial cofactor engineering[J]. China Biotechnology, 2023, 43(4): 112-122. | |
30 | Asadollahi M A, Maury J, Patil K R, et al. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering[J]. Metabolic Engineering, 2009, 11(6): 328-334. |
31 | Hou J, Vemuri G N, Bao X M, et al. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae [J]. Applied Microbiology and Biotechnology, 2009, 82(5): 909-919. |
32 | Paramasivan K, Mutturi S. Regeneration of NADPH coupled with HMG-CoA reductase activity increases squalene synthesis in Saccharomyces cerevisiae [J]. Journal of Agricultural and Food Chemistry, 2017, 65(37): 8162-8170. |
33 | 陈孚江, 周景文, 史仲平, 等. 乙酰辅酶A合成代谢对酿酒酵母生理功能的影响[J]. 微生物学报, 2010, 50(9): 1172-1179. |
Chen F J, Zhou J W, Shi Z P, et al. Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae [J]. Acta Microbiologica Sinica, 2010, 50(9): 1172-1179. | |
34 | Huang Y L, Ye Z L, Wan X K, et al. Systematic mining and evaluation of the sesquiterpene skeletons as high energy aviation fuel molecules[J]. Advanced Science, 2023, 10(23): e2300889. |
[1] | Xuemei NA, Yu WANG, Yaozhu JIANG, Nan JIA, Ying WANG, Chun LI. Expression optimization of heterologous CYP450 enzyme promotes the synthesis of ursolic acid in engineering Saccharomyces cerevisiae [J]. CIESC Journal, 2024, 75(7): 2624-2632. |
[2] | Tao SUN, Meili SUN, Ran LU, Yizi YU, Kaifeng WANG, Xiaojun JI. Synthetic biology of yeasts drives green biomanufacturing of succinic acid [J]. CIESC Journal, 2024, 75(4): 1382-1393. |
[3] | Xueying WANG, Yongjin ZHOU, Zongbao ZHAO. Non-natural redox cofactors empowered biomanufacturing [J]. CIESC Journal, 2024, 75(11): 4037-4047. |
[4] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[5] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[6] | Xue LIU, Lijuan ZHANG, Guangrong ZHAO. Commensalistic Escherichia coli coculture for biosynthesis of daidzein [J]. CIESC Journal, 2022, 73(9): 4015-4024. |
[7] | Jingnan WANG, Jian PANG, Lei QIN, Chao GUO, Bo LYU, Chun LI, Chao WANG. Breeding and modification strategies of butenyl-spinosyn high-yield strains [J]. CIESC Journal, 2022, 73(2): 566-576. |
[8] | Yi SUN, Teng ZHANG, Bo LYU, Chun LI. Improvement for fine regulation of microbial cell factory by intracellular biosensors [J]. CIESC Journal, 2022, 73(2): 521-534. |
[9] | Xinhui WANG, Ying WANG, Mingdong YAO, Wenhai XIAO. Research progress of vitamin A biosynthesis [J]. CIESC Journal, 2022, 73(10): 4311-4323. |
[10] | Wulin ZHOU, Huifang GAO, Yuling WU, Xian ZHANG, Meijuan XU, Taowei YANG, Minglong SHAO, Zhiming RAO. Engineering of Saccharomyces cerevisiae for biosynthesis of campesterol [J]. CIESC Journal, 2021, 72(8): 4314-4324. |
[11] | MAO Jinzhu, XIAO Shuling, YANG Zhichun, WANG Xiaoyu, ZHANG Shi, CHEN Junhong, XIE Jisheng, CHEN Fude, HUANG Zinuo, FENG Tianyu, ZHANG Aihui, FANG Baishan. Application of synthetic biology in pesticides residues detection [J]. CIESC Journal, 2021, 72(5): 2413-2425. |
[12] | WANG Xin, ZHAO Peng, LI Qingyang, TIAN Pingfang. Research advances in semiconductor synthetic biology [J]. CIESC Journal, 2021, 72(5): 2426-2435. |
[13] | Yukun ZHENG, Qing SUN, Zhen CHEN, Huimin YU. Progress for chemicals production via microbial cell factory: selecting several small molecules and macromolecular products as examples [J]. CIESC Journal, 2021, 72(12): 6109-6121. |
[14] | Zhen ZHANG, Xuecheng ZENG, Lei QIN, Chun LI. Intelligent design of microbial cell factory [J]. CIESC Journal, 2021, 72(12): 6093-6108. |
[15] | ZHAO Zhenyao, ZHANG Baocai, LI Feng, SONG Hao. Design and construction of exoelectrogens by synthetic biology [J]. CIESC Journal, 2021, 72(1): 468-482. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 65
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 151
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||