CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3488-3497.DOI: 10.11949/0438-1157.20240317
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Weihua CAI1,3(), Yuhang WANG1,4, Wenchao ZHANG1,5(
), Shaodan LI2, Xinlong LIU1, Ben'an CAI1(
), Jincheng WANG1
Received:
2024-03-20
Revised:
2024-05-09
Online:
2024-11-04
Published:
2024-10-25
Contact:
Wenchao ZHANG, Ben'an CAI
蔡伟华1,3(), 王玉航1,4, 张文超1,5(
), 李少丹2, 刘鑫龙1, 蔡本安1(
), 王金成1
通讯作者:
张文超,蔡本安
作者简介:
蔡伟华(1982—),男,博士,教授,caiwh@neepu.edu.cn
基金资助:
CLC Number:
Weihua CAI, Yuhang WANG, Wenchao ZHANG, Shaodan LI, Xinlong LIU, Ben'an CAI, Jincheng WANG. Gas production characteristics of a porous media-Venturi bubble generator[J]. CIESC Journal, 2024, 75(10): 3488-3497.
蔡伟华, 王玉航, 张文超, 李少丹, 刘鑫龙, 蔡本安, 王金成. 多孔介质-文丘里气泡发生器产气特性[J]. 化工学报, 2024, 75(10): 3488-3497.
测量仪表 | 量程 | 精度 | 数据采集精度 |
---|---|---|---|
涡轮流量计 | 2~20 m3/h | 1% | 0.10% |
气体流量计 | 0~2 L/min | 1.5% | 0.10% |
压力 | 0~0.6 MPa | 0.25% | 0.10% |
压力 | -0.1~0.6 MPa | 0.25% | 0.10% |
压力表3 | 0~0.6 MPa | 0.25% | 0.10% |
Table 1 Instrumentation and data acquisition accuracy
测量仪表 | 量程 | 精度 | 数据采集精度 |
---|---|---|---|
涡轮流量计 | 2~20 m3/h | 1% | 0.10% |
气体流量计 | 0~2 L/min | 1.5% | 0.10% |
压力 | 0~0.6 MPa | 0.25% | 0.10% |
压力 | -0.1~0.6 MPa | 0.25% | 0.10% |
压力表3 | 0~0.6 MPa | 0.25% | 0.10% |
工况 | 气流量/(L/min) | 水流量/(m3/h) | 含气率/% |
---|---|---|---|
1 | 1.00 | 5.01 | 1.20 |
2 | 1.00 | 7.51 | 0.80 |
3 | 1.00 | 10.00 | 0.60 |
4 | 1.00 | 12.47 | 0.48 |
5 | 1.00 | 14.98 | 0.40 |
6 | 0.30 | 10.11 | 0.18 |
7 | 0.60 | 10.03 | 0.36 |
8 | 0.90 | 10.01 | 0.54 |
9 | 1.20 | 10.00 | 0.72 |
10 | 1.49 | 10.01 | 0.89 |
11 | 1.79 | 10.02 | 1.07 |
Table 2 Experimental conditions of porous media-Venturi bubble generator
工况 | 气流量/(L/min) | 水流量/(m3/h) | 含气率/% |
---|---|---|---|
1 | 1.00 | 5.01 | 1.20 |
2 | 1.00 | 7.51 | 0.80 |
3 | 1.00 | 10.00 | 0.60 |
4 | 1.00 | 12.47 | 0.48 |
5 | 1.00 | 14.98 | 0.40 |
6 | 0.30 | 10.11 | 0.18 |
7 | 0.60 | 10.03 | 0.36 |
8 | 0.90 | 10.01 | 0.54 |
9 | 1.20 | 10.00 | 0.72 |
10 | 1.49 | 10.01 | 0.89 |
11 | 1.79 | 10.02 | 1.07 |
1 | Hashim A, Yaakob O B, Koh K K, et al. Review of micro-bubble ship resistance reduction methods and the mechanisms that affect the skin friction on drag reduction from 1999 to 2015[J]. Jurnal Teknologi, 2015, 74(5): 105-114. |
2 | Roovers S, Segers T, Lajoinie G, et al. The role of ultrasound-driven microbubble dynamics in drug delivery: from microbubble fundamentals to clinical translation[J]. Langmuir, 2019, 35(31): 10173-10191. |
3 | Burns S E, Yiacoumi S, Tsouris C. Microbubble generation for environmental and industrial separations[J]. Separation and Purification Technology, 1997, 11(3): 221-232. |
4 | Budhijanto W, Darlianto D, Pradana Y S, et al. Application of micro bubble generator as low cost and high efficient aerator for sustainable fresh water fish farming[C]//AIP Conference Proceedings. East Java, Indonesia, 2017. |
5 | 王佳伟, 苏德皓, 赵爱虎, 等. SP-100空间堆气液分离器前导流区结构设计数值模拟研究[J]. 东北电力大学学报, 2022, 42(3): 30-36. |
Wang J W, Su D H, Zhao A H, et al. Numerical simulation research of diversion zone structure design of SP-100 space reactor gas-liquid separator [J]. Journal of Northeast Electric Power University, 2022, 42(3): 30-36. | |
6 | Fujiwara A, Takagi S, Watanabe K, et al. Experimental study on the new micro-bubble generator and its application to water purification system[C]//ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. Honolulu, Hawaii, USA, 2009: 469-473. |
7 | Zhao L, Mo Z Y, Sun L C, et al. A visualized study of the motion of individual bubbles in a Venturi-type bubble generator[J]. Progress in Nuclear Energy, 2017, 97: 74-89. |
8 | Huang J, Sun L C, Du M, et al. An investigation on the performance of a micro-scale Venturi bubble generator[J]. Chemical Engineering Journal, 2020, 386: 120980. |
9 | Gordiychuk A, Svanera M, Benini S, et al. Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator[J]. Experimental Thermal and Fluid Science, 2016, 70: 51-60. |
10 | Li J J, Song Y C, Yin J L, et al. Investigation on the effect of geometrical parameters on the performance of a Venturi type bubble generator[J]. Nuclear Engineering and Design, 2017, 325: 90-96. |
11 | Gabbard C H. Development of a Venturi type bubble generator for use in the molten-salt reactor xenon removal system[R]. USA: Atomic Energy Commission, 1972. |
12 | Yin J L, Li J J, Li H, et al. Experimental study on the bubble generation characteristics for a Venturi type bubble generator[J]. International Journal of Heat and Mass Transfer, 2015, 91: 218-224. |
13 | 崔怡洲, 李成祥, 翟霖晓, 等. 亚毫米气泡和常规尺寸气泡气液两相流流动与传质特性对比[J]. 化工学报, 2024, 75(1): 197-210. |
Cui Y Z, Li C X, Zhai L X, et al. Comparative study on the flow and mass transfer characteristics of sub-millimeter bubbles and conventional bubbles in gas-liquid two-phase flow[J]. CIESC Journal, 2024, 75(1): 197-210. | |
14 | 颜攀, 黄正梁, 王靖岱, 等. 文丘里气泡发生器的气泡尺寸及分布[J]. 浙江大学学报(工学版), 2017, 51(10): 2070-2076. |
Yan P, Huang Z L, Wang J D, et al. Bubble size and its distribution for Venturi bubble generator[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(10): 2070-2076. | |
15 | Sadatomi M, Kawahara A, Kano K, et al. Performance of a new micro-bubble generator with a spherical body in a flowing water tube[J]. Experimental Thermal and Fluid Science, 2005, 29(5): 615-623. |
16 | de Oro O E, Carmona G M, Durango P N, et al. Design and experimental evaluation of a Venturi and Venturi-vortex microbubble aeration system[J]. Heliyon, 2022, 8(10): e10824. |
17 | Wang X Y, Shuai Y, Zhou X R, et al. Performance comparison of swirl-Venturi bubble generator and conventional Venturi bubble generator[J]. Chemical Engineering and Processing - Process Intensification, 2020, 154: 108022. |
18 | Wang X Y, Shuai Y, Zhang H M, et al. Bubble breakup in a swirl-Venturi microbubble generator[J]. Chemical Engineering Journal, 2021, 403: 126397. |
19 | Ding G D, Li Z L, Chen J Q, et al. An investigation on the bubble transportation of a two-stage series Venturi bubble generator[J]. Chemical Engineering Research and Design, 2021, 174: 345-356. |
20 | 丁国栋, 陈家庆, 李振林, 等. 注气孔位置对文丘里管式微气泡发生器成泡特性的影响分析[J]. 化工学报, 2021, 72(11): 5552-5562. |
Ding G D, Chen J Q, Li Z L, et al. Analysis of the effect of air injection hole position on bubble formation characteristics of Venturi-type microbubble generator[J]. CIESC Journal, 2021, 72(11): 5552-5562. | |
21 | 徐振华, 赵红卫, 方为茂, 等. 金属微孔管制造微气泡的研究[J]. 环境污染治理技术与设备, 2006, 7(9): 78-82. |
Xu Z H, Zhao H W, Fang W M, et al. Research on microbubbles generation by metal microporous tube[J]. Techniques and Equipment for Environmental Pollution Control, 2006, 7(9): 78-82. | |
22 | 吴胜军, 方为茂, 赵红卫, 等. 陶瓷微孔膜管制造微气泡的研究[J]. 膜科学与技术, 2009, 29(6): 61-65. |
Wu S J, Fang W M, Zhao H W, et al. Research on microbubbles generated by ceramic microporous tube [J]. Membrane Science and Technology, 2009, 29(6): 61-65. | |
23 | 吴胜军, 方为茂, 赵红卫, 等. 高速剪切流剪切形成微气泡的研究[J]. 水处理技术, 2009, 35(5): 44-48. |
Wu S J, Fang W M, Zhao H W, et al. Research on microbubbles formation by high-speed cross-flow[J]. Technology of Water Treatment, 2009, 35(5): 44-48. | |
24 | 吴胜军, 方为茂, 赵红卫, 等. PE微孔形成微气泡及其理论研究[J]. 四川化工, 2008, 11(6): 1-4. |
Wu S J, Fang W M, Zhao H W, et al. Studies of microbubble formation by PE microporous and its theoretics[J]. Sichuan Chemical Industry, 2008, 11(6): 1-4. | |
25 | 杨晓明, 孙斌, 翟东旭. 多孔介质通道气液两相流型及压降特性研究[J]. 东北电力大学学报, 2014, 34(4): 1-6. |
Yang X M, Sun B, Zhai D X. Two-phase flow type and pressure drop characteristics research in porous media channel[J]. Journal of Northeast Electric Power University, 2014, 34(4): 1-6. | |
26 | Marshall S H, Chudacek M W, Bagster D F. A model for bubble formation from an orifice with liquid cross-flow[J]. Chemical Engineering Science, 1993, 48(11): 2049-2059. |
27 | Kazakis N A, Mouza A A, Paras S V. Experimental study of bubble formation at metal porous spargers: effect of liquid properties and sparger characteristics on the initial bubble size distribution[J]. Chemical Engineering Journal, 2008, 137(2): 265-281. |
28 | Bokányi L, Csöke B. Preparation of clean coal by flotation following ultra fine liberation[J]. Applied Energy, 2003, 74(3/4): 349-358. |
29 | 张卫, 李浙昆. 一种新型微泡发生器的理论研究[J]. 新技术新工艺,2017, (2): 37-40. |
Zhang W, Li Z K. Research on theory of a kind of new micro-bubble generator[J]. New Technology & New Process, 2017, (2): 37-40. | |
30 | 吴翔. 微气泡发生器在旋流气浮技术中的应用研究[D]. 北京: 中国石油大学(北京), 2016. |
Wu X. Research on the application of microbubble generator in the cyclone flotation technology[D]. Beijing: China University of Petroleum, 2016. | |
31 | Liew K C S, Rasdi A, Budhijanto W, et al. Porous Venturi-orifice microbubble generator for oxygen dissolution in water[J]. Processes, 2020, 8(10): 1266. |
32 | Sadatomi M, Kawahara A, Matsuura H, et al. Micro-bubble generation rate and bubble dissolution rate into water by a simple multi-fluid mixer with orifice and porous tube[J]. Experimental Thermal and Fluid Science, 2012, 41: 23-30. |
33 | 丁国栋. 文丘里管式微气泡发生器的结构优化与关联特性研究[D]. 北京: 中国石油大学(北京), 2022. |
Ding G D. Study on structural optimization and correlation characteristics of a Venturi type microbubble generator[D]. Beijing: China University of Petroleum, 2022. | |
34 | Mirsandi H, Smit W J, Kong G, et al. Bubble formation from an orifice in liquid cross-flow[J]. Chemical Engineering Journal, 2020, 386: 120902. |
35 | Kulkarni A A, Joshi J B. Bubble formation and bubble rise velocity in gas-liquid systems: a review[J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 5873-5931. |
[1] | Hao TANG, Dinghua HU, Qiang LI, Xuanchang ZHANG, Junjie HAN. Numerical and visualization study on dynamic behavior of bubbles in anti-acceleration double tangent arc channel [J]. CIESC Journal, 2024, 75(9): 3074-3082. |
[2] | Xinyi LUO, Qiang XU, Yonglu SHE, Tengfei NIE, Liejin GUO. Study on bubble dynamic characteristics and mass transfer mechanism in photoelectrochemical water splitting for hydrogen production [J]. CIESC Journal, 2024, 75(9): 3083-3093. |
[3] | Haoyu WANG, Yang YANG, Wenjie JING, Bin YANG, Yu TANG, Yi LIU. Study on characteristics of gas-liquid spiral annular flow under action by different swirlers [J]. CIESC Journal, 2024, 75(8): 2744-2755. |
[4] | Zhenghang LUO, Jingyu LI, Weixiong CHEN, Daotong CHONG, Junjie YAN. Numerical simulation of heat transfer characteristic and bubble force analysis of low flow rate vapor condensation under rolling motion [J]. CIESC Journal, 2024, 75(8): 2800-2811. |
[5] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
[6] | Mingjun YANG, Guangjun GONG, Jianan ZHENG, Yongchen SONG. Production characteristics and model of muddy hydrates with low permeability by depressurization [J]. CIESC Journal, 2024, 75(8): 2909-2916. |
[7] | Fangming LYU, Zhiming BAO, Bowen WANG, Kui JIAO. Investigation on impact of gas diffusion layer intrusion into channel on water management in fuel cell [J]. CIESC Journal, 2024, 75(8): 2929-2938. |
[8] | He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems [J]. CIESC Journal, 2024, 75(6): 2180-2189. |
[9] | Xinze LI, Shuangxing ZHANG, Honghai YANG, Wenjing DU. Experimental study on performance of new type of pulsating heat pipe for battery cooling [J]. CIESC Journal, 2024, 75(6): 2222-2232. |
[10] | Chaoyang GUAN, Guoqing HUANG, Yinan ZHANG, Hongxia CHEN, Xiaoze DU. Experimental study on enhancement of flow boiling through degassing with copper foam [J]. CIESC Journal, 2024, 75(5): 1765-1776. |
[11] | Wei WANG, Xu BAI, Xiang ZHAO, Xueliang MA, Wei LIN, Jiuyang YU. Optimization of air flotation cyclone separation conditions based on response surface methodology [J]. CIESC Journal, 2024, 75(5): 1929-1938. |
[12] | Yuhui SHI, Jiyuan XING, Xuehan JIANG, Shuang YE, Weiguang HUANG. Numerical simulation of bubble breakup and coalescence in centrifugal impeller based on PBM [J]. CIESC Journal, 2024, 75(5): 1816-1829. |
[13] | Juan WANG, Xiuming LI, Weitao SHAO, Xu DING, Ying HUO, Lianchao FU, Yunyu BAI, Di LI. Numerical simulation of flow and mass transfer characteristics in porous plate bubbling column reactor [J]. CIESC Journal, 2024, 75(3): 801-814. |
[14] | Sirui CHEN, Jingliang BI, Lei WANG, Yuanyuan LI, Gui LU. Unsupervised-feature extraction of gas-liquid two-phase flow pattern based on convolutional autoencoder: principle and application [J]. CIESC Journal, 2024, 75(3): 847-857. |
[15] | Nailiang LI, Changsong LIU, Xueping DU, Yifan ZHANG, Dongtai HAN. Analysis of multi-scale fractal characteristics of severe slugging based on Hurst exponent [J]. CIESC Journal, 2024, 75(2): 484-492. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 352
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 215
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||