CIESC Journal ›› 2024, Vol. 75 ›› Issue (11): 4188-4195.DOI: 10.11949/0438-1157.20240593
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Wenna TANG1(), Hongchen LIU1(
), Xiaotian MI1, Liewei QIU1(
), Mei YANG2, Guangwen CHEN2
Received:
2024-05-31
Revised:
2024-07-09
Online:
2024-12-26
Published:
2024-11-25
Contact:
Hongchen LIU, Liewei QIU
唐文娜1(), 刘宏臣1(
), 米晓天1, 秋列维1(
), 杨梅2, 陈光文2
通讯作者:
刘宏臣,秋列维
作者简介:
唐文娜(2000—),女,硕士研究生,632589947@qq.com
基金资助:
CLC Number:
Wenna TANG, Hongchen LIU, Xiaotian MI, Liewei QIU, Mei YANG, Guangwen CHEN. Experimental investigation of droplet formation in microchannel device with an embedded microsieve[J]. CIESC Journal, 2024, 75(11): 4188-4195.
唐文娜, 刘宏臣, 米晓天, 秋列维, 杨梅, 陈光文. 嵌入式筛孔微通道内液滴生成规律研究[J]. 化工学报, 2024, 75(11): 4188-4195.
流体 | 密度 ρ/(kg/m3) | 黏度 μ/(mPa·s) | 界面张力 γ/(mN/m) |
---|---|---|---|
硅油 | 955 | 540 | — |
去离子水 | 998 | 0.98 | 41.47 |
0.1%(质量分数)SDS | 998 | 0.98 | 11.83 |
1%(质量分数)SDS | 985 | 0.98 | 8.89 |
Table 1 Physical properties of the two-phase system
流体 | 密度 ρ/(kg/m3) | 黏度 μ/(mPa·s) | 界面张力 γ/(mN/m) |
---|---|---|---|
硅油 | 955 | 540 | — |
去离子水 | 998 | 0.98 | 41.47 |
0.1%(质量分数)SDS | 998 | 0.98 | 11.83 |
1%(质量分数)SDS | 985 | 0.98 | 8.89 |
Fig.3 Diagram of the active pore number distribution characterized by Cac and CadNumber of active pore: ×(water),-(0.1%SDS),+(1%SDS) —1; hollow dot—2; solid dot—3
Fig.5 Effect of the ratio of continuous and dispersed phase flow rates on the droplet size for the silicone oil/water system in three-pore microsieve device
1 | Moragues T, Arguijo D, Beneyton T, et al. Droplet-based microfluidics[J]. Nature Reviews Methods Primers, 2023, 3: 32. |
2 | Yang M, Luo L M, Chen G W. Microfluidic synthesis of ultrasmall Co nanoparticles over reduced graphene oxide and their catalytic properties[J]. AIChE Journal, 2020, 66(6): e16950. |
3 | Umbanhowar P B, Prasad V, Weitz D A. Monodisperse emulsion generation via drop break off in a coflowing stream[J]. Langmuir, 2000, 16(2): 347-351. |
4 | Zhu P G, Wang L Q. Microfluidics-enabled soft manufacture of materials with tailorable wettability[J]. Chemical Reviews, 2022, 122(7): 7010-7060. |
5 | Lathia R, Nampoothiri K N, Sagar N, et al. Advances in microscale droplet generation and manipulation[J]. Langmuir, 2023, 39(7): 2461-2482. |
6 | Wang K, Li L T, Xie P, et al. Liquid-liquid microflow reaction engineering[J]. Reaction Chemistry & Engineering, 2017, 2(5): 611-627. |
7 | Liu Z K, Yang M, Yao W, et al. Microfluidic ultrasonic cavitation enables versatile and scalable synthesis of monodisperse nanoparticles for biomedical application[J]. Chemical Engineering Science, 2023, 280: 119052. |
8 | Liu W W, Zhu Y. Development and application of analytical detection techniques for droplet-based microfluidics—a review[J]. Analytica Chimica Acta, 2020, 1113: 66-84. |
9 | Luo L M, Yang M, Chen G W. Continuous synthesis of TiO2-supported noble metal nanoparticles and their application in ammonia borane hydrolysis[J]. Chemical Engineering Science, 2022, 251: 117479. |
10 | Xu J H, Li S W, Tan J, et al. Preparation of highly monodisperse droplet in a T-junction microfluidic device[J]. AIChE Journal, 2006, 52(9): 3005-3010. |
11 | 宋仕容, 刘宏臣, 米晓天, 等. 同轴微通道内管结构对液滴生成的影响规律研究[J]. 化工学报, 2024, 75(2): 566-574. |
Song S R, Liu H C, Mi X T, et al. Experimental investigation of droplet formation in coaxial microchannels with different geometries of inner channel[J]. CIESC Journal, 2024, 75(2): 566-574. | |
12 | Guerrero J, Chang Y W, Fragkopoulos A A, et al. Capillary-based microfluidics-coflow, flow-focusing, electro-coflow, drops, jets, and instabilities[J]. Small, 2020, 16(9): 1904344. |
13 | Wang W, Xie R, Ju X J, et al. Controllable microfluidic production of multicomponent multiple emulsions[J]. Lab on a Chip, 2011, 11(9): 1587-1592. |
14 | Wang K, Lu Y C, Xu J H, et al. Generation of micromonodispersed droplets and bubbles in the capillary embedded T-junction microfluidic devices[J]. AIChE Journal, 2011, 57(2): 299-306. |
15 | Tian F, Cai L L, Liu C, et al. Microfluidic technologies for nanoparticle formation[J]. Lab on a Chip, 2022, 22(3): 512-529. |
16 | Yang S H, Ju X J, Deng C F, et al. Controllable fabrication of monodisperse poly(vinyl alcohol) microspheres with droplet microfluidics for embolization[J]. Industrial & Engineering Chemistry Research, 2022, 61(34): 12619-12631. |
17 | Sotowa K I, Sugiyama S, Nakagawa K. Flow uniformity in deep microchannel reactor under high throughput conditions[J]. Organic Process Research & Development, 2009, 13(5): 1026-1031. |
18 | 崔永晋, 李严凯, 王凯, 等. 微分散设备数量放大方式研究进展[J]. 化工学报, 2020, 71(10): 4350-4364. |
Cui Y J, Li Y K, Wang K, et al. Recent advances of numbering-up technology of micro-dispersion devices[J]. CIESC Journal, 2020, 71(10): 4350-4364. | |
19 | Zhang J S, Wang K, Teixeira A R, et al. Design and scaling up of microchemical systems: a review[J]. Annual Review of Chemical and Biomolecular Engineering, 2017, 8: 285-305. |
20 | 邓传富, 汪伟, 谢锐, 等. 液滴微流控的集成化放大方法研究进展[J]. 化工学报, 2021, 72(12): 5965-5974. |
Deng C F, Wang W, Xie R, et al. Recent progress in scale-up integration of microfluidic droplet generators[J]. CIESC Journal, 2021, 72(12): 5965-5974. | |
21 | Cui Y J, Li Y K, Wang K, et al. High-throughput preparation of uniform tiny droplets in multiple capillaries embedded stepwise microchannels[J]. Journal of Flow Chemistry, 2020, 10(1): 271-282. |
22 | 李光晓, 刘塞尔, 苏远海. 微尺度内液-液传质及反应过程强化的研究进展[J]. 化工学报, 2021, 72(1): 452-467. |
Li G X, Liu S E, Su Y H. Research progress on micro-scale internal liquid-liquid mass transfer and reaction process enhancement[J]. CIESC Journal, 2021, 72(1): 452-467. | |
23 | Wang K, Lu Y C, Luo G S. Strategy for scaling-up of a microsieve dispersion reactor[J]. Chemical Engineering & Technology, 2014, 37(12): 2116-2122. |
24 | Zheng C, Zhao B C, Wang K, et al. Bubble generation rules in microfluidic devices with microsieve array as dispersion medium[J]. AIChE Journal, 2015, 61(5): 1663-1676. |
25 | Li S W, Xu J H, Wang Y J, et al. Liquid-liquid two-phase flow in pore array microstructured devices for scaling-up of nanoparticle preparation[J]. AIChE Journal, 2009, 55(12): 3041-3051. |
26 | Li W P, Xia F S, Zhao S C, et al. Characterization of liquid-liquid mass transfer performance in a novel pore-array intensified tube-in-tube microchannel[J]. AIChE Journal, 2020, 66(4): e16893. |
27 | Wang K, Lu Y C, Xu J H, et al. Droplet generation in micro-sieve dispersion device[J]. Microfluidics and Nanofluidics, 2011, 10(5): 1087-1095. |
28 | Shao H W, Lu Y C, Wang K, et al. Liquid-liquid microflows in micro-sieve dispersion devices with dual pore size[J]. Microfluidics and Nanofluidics, 2012, 12(5): 705-714. |
29 | Hu Y P, Wang K, Han C L, et al. Liquid-liquid microdispersion method for the synthesis of TS-1 free of extra-framework Ti species[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 12010-12017. |
30 | Yuan Q C, Aryanti N, Gutiérrez G, et al. Enhancing the throughput of membrane emulsification techniques to manufacture functional particles[J]. Industrial & Engineering Chemistry Research, 2009, 48(19): 8872-8880. |
31 | Darvishzadeh T, Tarabara V V, Priezjev N V. Oil droplet behavior at a pore entrance in the presence of crossflow: implications for microfiltration of oil-water dispersions[J]. Journal of Membrane Science, 2013, 447: 442-451. |
32 | Guo M Z, Bai S Q, Wang Y J, et al. Novel microfabricated nozzle array with grooves for microdroplet generation[J]. Chemical Engineering Journal, 2021, 416: 129103. |
33 | Pathak M. Numerical simulation of membrane emulsification: effect of flow properties in the transition from dripping to jetting[J]. Journal of Membrane Science, 2011, 382(1/2): 166-176. |
[1] | Zhengang ZHAO, Mengyao ZHOU, Dian JIN, Dacheng ZHANG. Study on direct methanol fuel cell performance modification based on foam carbon diffusion layer [J]. CIESC Journal, 2024, 75(S1): 259-266. |
[2] | Yushuang LI, Xincheng WANG, Boyao WEN, Zhengyuan LUO, Bofeng BAI. Two-phase flow of emulsion flooding and its influencing factors in porous media [J]. CIESC Journal, 2024, 75(S1): 56-66. |
[3] | Lü LIU, Jieru LIU, Liangliang FAN, Liang ZHAO. Study on passive microfluidic method for particle separation based on laminar effect [J]. CIESC Journal, 2024, 75(S1): 67-75. |
[4] | Chaowei CHEN, Yang LIU, Wenjing DU, Jinbo LI, Dakuo SHI, Gongming XIN. Flow and heat transfer characteristics of micro ribs channel with local hot spots [J]. CIESC Journal, 2024, 75(9): 3113-3121. |
[5] | He ZHU, Yi ZHANG, Nana QI, Kai ZHANG. Effect of particle viscosity in two-fluid model on homogeneous liquid-solid fluidization under Euler-Euler framework [J]. CIESC Journal, 2024, 75(9): 3103-3112. |
[6] | Hao TANG, Dinghua HU, Qiang LI, Xuanchang ZHANG, Junjie HAN. Numerical and visualization study on dynamic behavior of bubbles in anti-acceleration double tangent arc channel [J]. CIESC Journal, 2024, 75(9): 3074-3082. |
[7] | Liang ZHAO, Yuqiao LI, De ZHANG, Shengqiang SHEN. Experimental study of internal and external field characteristics of spiral nozzle [J]. CIESC Journal, 2024, 75(8): 2777-2786. |
[8] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
[9] | Yanxi LI, Yechun WANG, Xiangdong XIE, Jinzhi WANG, Jiang WANG, Yu ZHOU, Yingxiu PAN, Wentao DING, Liejin GUO. Study on separation characteristics and structure optimization of a volute type multi-channel gas-liquid cyclone separator [J]. CIESC Journal, 2024, 75(8): 2875-2885. |
[10] | Lichang FANG, Zilong LI, Bo CHEN, Zheng SU, Lisi JIA, Zhibin WANG, Ying CHEN. Study on cooling characteristics of chip array based on microencapsulated phase change material slurry [J]. CIESC Journal, 2024, 75(7): 2455-2464. |
[11] | Qingjie YU, Honghai YANG, Yuhao LIU, Haizhou FANG, Weiqi HE, Jun WANG, Xincheng LU. Wavelet analysis and flow pattern identification in pulsating heat pipes based on temperature signals [J]. CIESC Journal, 2024, 75(7): 2497-2504. |
[12] | Kehao DONG, Jingzhi ZHOU, Feng ZHOU, Haijia CHEN, Xiulan HUAI, Dong LI. Experiment of gas flow pressure drop under complex boundary conditions in ultra-thin space [J]. CIESC Journal, 2024, 75(7): 2505-2521. |
[13] | Xiaoping LUO, Yuntian HOU, Yijie FAN. Flow boiling heat transfer and temperature uniformity in micro-channel with countercurrent phase separation structure [J]. CIESC Journal, 2024, 75(7): 2474-2485. |
[14] | He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems [J]. CIESC Journal, 2024, 75(6): 2180-2189. |
[15] | Fan LIU, Yuantong ZHANG, Cheng TAO, Chengyu HU, Xiaoping YANG, Jinjia WEI. Performance of manifold microchannel liquid cooling [J]. CIESC Journal, 2024, 75(5): 1777-1786. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 174
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 110
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||