CIESC Journal ›› 2024, Vol. 75 ›› Issue (11): 4286-4297.DOI: 10.11949/0438-1157.20240600
• Separation engineering • Previous Articles Next Articles
Mi FENG1,2,4(), Jie ZHANG3(
), Xingmei LYU1(
)
Received:
2024-06-03
Revised:
2024-08-14
Online:
2024-12-26
Published:
2024-11-25
Contact:
Xingmei LYU
通讯作者:
吕兴梅
作者简介:
冯咪(1992—),女,博士研究生,副研究员,fengmi@ipe.ac.cn基金资助:
CLC Number:
Mi FENG, Jie ZHANG, Xingmei LYU. One-step extraction and separation of high purity chitin based on choline ionic liquid[J]. CIESC Journal, 2024, 75(11): 4286-4297.
冯咪, 张杰, 吕兴梅. 基于胆碱类离子液体的高纯甲壳素一步提取分离[J]. 化工学报, 2024, 75(11): 4286-4297.
离子液体 | 溶解率/% | 再生率/% |
---|---|---|
[Ch]OAc | 58.0 | <5.0 |
[Emim]OAc | 63.0 | 19.0 |
[Ch]Ms | 70.5 | <5.0 |
[Emim]Ms | 38.8 | <5.0 |
Table 1 Dissolution rate and regeneration rate of shrimp shells by the used ionic liquids
离子液体 | 溶解率/% | 再生率/% |
---|---|---|
[Ch]OAc | 58.0 | <5.0 |
[Emim]OAc | 63.0 | 19.0 |
[Ch]Ms | 70.5 | <5.0 |
[Emim]Ms | 38.8 | <5.0 |
离子液体 | 不溶物收率/% | 不溶物中甲壳素收率/% | 再生物收率/% | 再生物中甲壳素收率/% |
---|---|---|---|---|
[Ch]OAc | 42.0 | 73.7 | <5 | — |
[Emim]OAc | 37.0 | 48.8 | 19 | 38.1 |
[Ch]Ms | 29.5 | 63.9 | <5 | — |
[Emim]Ms | 61.2 | 87.7 | <5 | — |
Table 2 The yield of precipitate, regenerated product and chitin using different ILs treatment
离子液体 | 不溶物收率/% | 不溶物中甲壳素收率/% | 再生物收率/% | 再生物中甲壳素收率/% |
---|---|---|---|---|
[Ch]OAc | 42.0 | 73.7 | <5 | — |
[Emim]OAc | 37.0 | 48.8 | 19 | 38.1 |
[Ch]Ms | 29.5 | 63.9 | <5 | — |
[Emim]Ms | 61.2 | 87.7 | <5 | — |
提取体系 | 生物质原料 | 提取条件 | 甲壳素纯度/% | 甲壳素收率/% | 甲壳素分子量 | 甲壳素DA值/% |
---|---|---|---|---|---|---|
[Amim]Br + 柠檬酸水溶液[ | 蟹壳 | 120℃ 24 h | >99 | 12.6 | 1.5×105 | 94 |
[DIPEA][Ac] + 柠檬酸水溶液[ | 虾壳 | 110℃ 36 h | >98 | 14.8 | 7.1×104 | 98.67 |
[DIPEA][P] + 柠檬酸水溶液[ | 虾壳 | 110℃ 30 h | >98 | 11.5 | 5.6×104 | 98.33 |
[DMBA][Ac] + 柠檬酸水溶液[ | 虾壳 | 110℃ 30 h | >98 | 13.7 | 6.3×104 | 98.99 |
[NH3(CH2)2OH][OAc][ | 处理虾壳 | 90℃ 2 h | 46 | 81 | — | — |
[NH3OH][OAc][ | 虾壳 | 100℃ 8 h | 76 | 96 | — | 83 |
处理虾壳 | 100℃ 8 h | 78 | 100 | — | 68 | |
[DBNH][OAc]-AcOH[ | 虾壳 | 120℃ 30 h | 91 | 30 | 83 | |
硫酸镍水溶液+[Emim]Cl[ | 虾壳 | 130℃ 24 h + 150℃ 24 h | 96.5 | 72.5 | 1.3×105 | — |
[Ch]Ms(本工作) | 虾壳 | 110℃ 7 h | 97.4 | 63.9 | 1.17×105 | 95.5 |
Table 3 Comparison of chitin extraction using different ionic liquids
提取体系 | 生物质原料 | 提取条件 | 甲壳素纯度/% | 甲壳素收率/% | 甲壳素分子量 | 甲壳素DA值/% |
---|---|---|---|---|---|---|
[Amim]Br + 柠檬酸水溶液[ | 蟹壳 | 120℃ 24 h | >99 | 12.6 | 1.5×105 | 94 |
[DIPEA][Ac] + 柠檬酸水溶液[ | 虾壳 | 110℃ 36 h | >98 | 14.8 | 7.1×104 | 98.67 |
[DIPEA][P] + 柠檬酸水溶液[ | 虾壳 | 110℃ 30 h | >98 | 11.5 | 5.6×104 | 98.33 |
[DMBA][Ac] + 柠檬酸水溶液[ | 虾壳 | 110℃ 30 h | >98 | 13.7 | 6.3×104 | 98.99 |
[NH3(CH2)2OH][OAc][ | 处理虾壳 | 90℃ 2 h | 46 | 81 | — | — |
[NH3OH][OAc][ | 虾壳 | 100℃ 8 h | 76 | 96 | — | 83 |
处理虾壳 | 100℃ 8 h | 78 | 100 | — | 68 | |
[DBNH][OAc]-AcOH[ | 虾壳 | 120℃ 30 h | 91 | 30 | 83 | |
硫酸镍水溶液+[Emim]Cl[ | 虾壳 | 130℃ 24 h + 150℃ 24 h | 96.5 | 72.5 | 1.3×105 | — |
[Ch]Ms(本工作) | 虾壳 | 110℃ 7 h | 97.4 | 63.9 | 1.17×105 | 95.5 |
1 | Rinaudo M. Chitin and chitosan: properties and applications[J]. Progress in Polymer Science, 2006, 31(7): 603-632. |
2 | Zheng Y R, Zhang H, Wang Z W, et al. Chitin nanofibrils assisted 3D printing all-chitin hydrogels for wound dressing[J]. Carbohydrate Polymers, 2024, 334: 122028. |
3 | Naghdi T, Golmohammadi H, Yousefi H, et al. Chitin nanofiber paper toward optical (bio)sensing applications[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15538-15552. |
4 | Xing F, Chi Z, Yang R X, et al. Chitin-hydroxyapatite-collagen composite scaffolds for bone regeneration[J]. International Journal of Biological Macromolecules, 2021, 184: 170-180. |
5 | Lv J R, Lv X H, Ma M H, et al. Chitin and chitin-based biomaterials: a review of advances in processing and food applications[J]. Carbohydrate Polymers, 2023, 299: 120142. |
6 | Riseh R S, Vazvani M G, Vatankhah M, et al. Chitin-induced disease resistance in plants: a review[J]. International Journal of Biological Macromolecules, 2024, 266(Pt 1): 131105. |
7 | No H K, Meyers S P, Lee K S. Isolation and characterization of chitin from crawfish shell waste[J]. Journal of Agricultural and Food Chemistry, 1989, 37(3): 575-579. |
8 | Hamdi M, Hammami A, Hajji S, et al. Chitin extraction from blue crab (Portunus segnis) and shrimp (Penaeus kerathurus) shells using digestive alkaline proteases from P. segnis viscera [J]. International Journal of Biological Macromolecules, 2017, 101: 455-463. |
9 | Dhanabalan V, Martin Xavier K A, Eppen S, et al. Characterization of chitin extracted from enzymatically deproteinized acetes shell residue with varying degree of hydrolysis[J]. Carbohydrate Polymers, 2021, 253: 117203. |
10 | Zhang Q, Wang L Y, Liu S G, et al. Establishment of successive co-fermentation by Bacillus subtilis and Acetobacter pasteurianus for extracting chitin from shrimp shells[J]. Carbohydrate Polymers, 2021, 258: 117720. |
11 | Tan Y N, Lee P P, Chen W N. Dual extraction of crustacean and fungal chitosan from a single Mucor circinelloides fermentation[J]. Fermentation, 2020, 6(2): 40. |
12 | Setoguchi T, Kato T, Yamamoto K, et al. Facile production of chitin from crab shells using ionic liquid and citric acid[J]. International Journal of Biological Macromolecules, 2012, 50(3): 861-864. |
13 | Tolesa L D, Gupta B S, Lee M J. Chitin and chitosan production from shrimp shells using ammonium-based ionic liquids[J]. International Journal of Biological Macromolecules, 2019, 130: 818-826. |
14 | He J, Qiang Q, Bai L, et al. Acetalization strategy in biomass valorization: a review[J]. Industrial Chemistry & Materials, 2024, 2(1): 30-56. |
15 | Hülsey M J. Shell biorefinery: a comprehensive introduction[J]. Green Energy & Environment, 2018, 3(4): 318-327. |
16 | Magalhães F F, Pereira M M, de Cássia Superbi de Sousa R, et al. Tailoring the partitioning of proteins using ionic liquids as adjuvants in polymer-polymer aqueous biphasic systems[J]. Green Chemical Engineering, 2022, 3(4): 328-337. |
17 | Barber P S, Griggs C S, Gurau G, et al. Coagulation of chitin and cellulose from 1-ethyl-3-methylimidazolium acetate ionic-liquid solutions using carbon dioxide[J]. Angewandte Chemie (International Ed. in English), 2013, 52(47): 12350-12353. |
18 | Qin Y, Lu X M, Sun N, et al. Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers[J]. Green Chemistry, 2010, 12(6): 968-971. |
19 | Barber P S, Griggs C S, Bonner J R, et al. Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells[J]. Green Chemistry, 2013, 15(3): 601-607. |
20 | Shamshina J L, Barber P S, Gurau G, et al. Pulping of crustacean waste using ionic liquids: to extract or not to extract[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(11): 6072-6081. |
21 | Feng M, He B, Chen X Y, et al. Separation of chitin from shrimp shells enabled by transition metal salt aqueous solution and ionic liquid[J]. Chinese Journal of Chemical Engineering, 2023, 53: 133-141. |
22 | 蒋挺大. 壳聚糖[M]. 2版. 北京: 化学工业出版社, 2007: 6-7. |
Jiang T D. Chitosan[M]. 2nd ed. Beijing: Chemical Industry Press, 2007: 6-7. | |
23 | Feng M, Yan J P, He B, et al. Controllable conversion of shrimp shells into chitin or derived carbon material using acidic deep eutectic solvent[J]. International Journal of Biological Macromolecules, 2021, 193: 347-357. |
24 | Poirier M, Charlet G. Chitin fractionation and characterization in N,N-dimethylacetamide/lithium chloride solvent system[J]. Carbohydrate Polymers, 2002, 50(4): 363-370. |
25 | Feng M, Lu X M, Zhang J, et al. Direct conversion of shrimp shells to O-acylated chitin with antibacterial and anti-tumor effects by natural deep eutectic solvents[J]. Green Chemistry, 2019, 21(1): 87-98. |
26 | Sun N, Parthasarathi R, Socha A M, et al. Understanding pretreatment efficacy of four cholinium and imidazolium ionic liquids by chemistry and computation[J]. Green Chemistry, 2014, 16(5): 2546-2557. |
27 | Parviainen A, King A W T, Mutikainen I, et al. Predicting cellulose solvating capabilities of acid-base conjugate ionic liquids[J]. ChemSusChem, 2013, 6(11): 2161-2169. |
28 | Motlagh S R, Elgharbawy A A, Khezri R, et al. Ionic liquid-based microwave-assisted extraction of protein from Nannochloropsis sp. biomass[J]. Biomass Conversion and Biorefinery, 2023, 13(9): 8327-8338. |
29 | Uto T, Idenoue S, Yamamoto K, et al. Understanding dissolution process of chitin crystal in ionic liquids: theoretical study[J]. Physical Chemistry Chemical Physics, 2018, 20(31): 20669-20677. |
30 | Tao Q Q, Henriquez F N, Ding K, et al. One-pot chitin pulping using recyclable superbase-based protic ionic liquid[J]. Carbohydrate Polymers, 2024, 327: 121680. |
31 | Romano P, Fabritius H, Raabe D. The exoskeleton of the lobster Homarus americanus as an example of a smart anisotropic biological material[J]. Acta Biomaterialia, 2007, 3(3): 301-309. |
32 | Kim Y, Park R D. Progress in bioextraction processes of chitin from crustacean biowastes[J]. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58(4): 545-554. |
33 | Politi Y, Arad T, Klein E, et al. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase[J]. Science, 2004, 306(5699): 1161-1164. |
34 | Al‐Sawalmih A, Li C H, Siegel S, et al. Microtexture and chitin/calcite orientation relationship in the mineralized exoskeleton of the American lobster[J]. Advanced Functional Materials, 2008, 18(20): 3307-3314. |
35 | Nikolov S, Petrov M, Lymperakis L, et al. Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticle[J]. Advanced Materials, 2010, 22(4): 519-526. |
36 | Ogawa Y, Lee C M, Nishiyama Y, et al. Absence of sum frequency generation in support of orthorhombic symmetry of α-chitin[J]. Macromolecules, 2016, 49(18): 7025-7031. |
37 | Yamaguchi Y, Nge T T, Takemura A, et al. Characterization of uniaxially aligned chitin film by 2D FT-IR spectroscopy[J]. Biomacromolecules, 2005, 6(4): 1941-1947. |
38 | Wu Y S, Sasaki T, Irie S, et al. A novel biomass-ionic liquid platform for the utilization of native chitin[J]. Polymer, 2008, 49(9): 2321-2327. |
39 | Cárdenas G, Cabrera G, Taboada E, et al. Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR[J]. Journal of Applied Polymer Science, 2004, 93(4): 1876-1885. |
40 | Sikorski P, Hori R, Wada M. Revisit of α-chitin crystal structure using high resolution X-ray diffraction data[J]. Biomacromolecules, 2009, 10(5): 1100-1105. |
41 | Xu J, McCarthy S P, Gross R A, et al. Chitosan film acylation and effects on biodegradability[J]. Macromolecules, 1996, 29(10): 3436-3440. |
42 | Ventura S P M, Neves C M S S, Freire M G, et al. Evaluation of anion influence on the formation and extraction capacity of ionic-liquid-based aqueous biphasic systems[J]. The Journal of Physical Chemistry B, 2009, 113(27): 9304-9310. |
43 | Schaefer J, Kramer K J, Garbow J R, et al. Aromatic cross-links in insect cuticle: detection by solid-state 13 C and 15 N NMR[J]. Science, 1987, 235(4793): 1200-1204. |
44 | Deng L L, Yue W, Zhang L H, et al. Biobased protic ionic liquids as sustainable solvents for wool keratin/cellulose simultaneous dissolution: solution properties and composited membrane preparation[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(6): 2158-216. |
[1] | Kuangxi LI, Peiqian YU, Jiangyun WANG, Haoran WEI, Zhigang ZHENG, Liuhai FENG. Flow analysis and structure optimization of micro-bubble swirling air flotation device [J]. CIESC Journal, 2024, 75(S1): 223-234. |
[2] | Huihui XIE, Jiaxin JIANG, Xin WANG, Zheng LI, Xin GUO, Xinran LYU, Lingyun WANG, Yang LIU. Study on transport separation of platinum and palladium by deep eutectic solvent polymer inclusion membrane [J]. CIESC Journal, 2024, 75(S1): 235-243. |
[3] | Zhi QIU, Ming TAN. Preparation of polyionic liquid membrane and its application in low-sodium and high-potassium healthy soy sauce [J]. CIESC Journal, 2024, 75(S1): 244-250. |
[4] | Lü LIU, Jieru LIU, Liangliang FAN, Liang ZHAO. Study on passive microfluidic method for particle separation based on laminar effect [J]. CIESC Journal, 2024, 75(S1): 67-75. |
[5] | Xuehong WU, Xin WEI, Jiawen HOU, Cai LYU, Yong LIU, He LIU, Zhijuan CHANG. Preparation of carbon nanotubes by pyrolysis method and their application in heat dissipation coatings [J]. CIESC Journal, 2024, 75(9): 3360-3368. |
[6] | Xiaoping LUO, Yuntian HOU, Yijie FAN. Flow boiling heat transfer and temperature uniformity in micro-channel with countercurrent phase separation structure [J]. CIESC Journal, 2024, 75(7): 2474-2485. |
[7] | Songhong ZHANG, Xinyi ZHAO, Xiaoling LOU, Shaochuan SHEN, Junxian YUN. Separation of lactoperoxidase using cation exchange nano-cryogels [J]. CIESC Journal, 2024, 75(7): 2574-2582. |
[8] | Xiaoqiao QIN, Hongbo TAN, Na WEN. Thermodynamic and economic analysis of air separation unit with energy storage and generation [J]. CIESC Journal, 2024, 75(7): 2409-2421. |
[9] | Haiyan DU, Kai ZHU, Feng YOU, Jinfeng WANG, Yifan ZHAO, Nan ZHANG, Ying LI. Self-healing anti-freezing ionic hydrogel for strain sensors [J]. CIESC Journal, 2024, 75(7): 2709-2722. |
[10] | Wenxuan ZHOU, Zhen LIU, Fujian ZHANG, Zhongqiang ZHANG. Mechanism of water treatment by high permeability-selectivity time dimension membrane method [J]. CIESC Journal, 2024, 75(7): 2583-2593. |
[11] | Xianggang ZHANG, Yulong CHANG, Hualin WANG, Xia JIANG. Low energy consumption non-phase change second drying of waste straw and other biomass [J]. CIESC Journal, 2024, 75(7): 2433-2445. |
[12] | Guangyu ZHANG, Ranfei FU, Bing SUN, Juncong YUAN, Xiang FENG, Chaohe YANG, Wei XU. Synthesis of propylene carbonate from CO2 and propylene oxide: hydrogen bond activation strategy [J]. CIESC Journal, 2024, 75(6): 2243-2251. |
[13] | Zongwei HUO, Yabin NIU, Yanqiu PAN. Behavior of high viscosity oil droplets in oil-water membrane separation and its influencing factors [J]. CIESC Journal, 2024, 75(6): 2262-2273. |
[14] | Yiqi ZHANG, Xuesong TAN, Wuhuan LI, Quan ZHANG, Changlin MIAO, Xinshu ZHUANG. Efficient fractionation of sugarcane bagasse with phenoxyethanol under mild condition [J]. CIESC Journal, 2024, 75(6): 2274-2282. |
[15] | Wei WANG, Xu BAI, Xiang ZHAO, Xueliang MA, Wei LIN, Jiuyang YU. Optimization of air flotation cyclone separation conditions based on response surface methodology [J]. CIESC Journal, 2024, 75(5): 1929-1938. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 182
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 122
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||