CIESC Journal ›› 2024, Vol. 75 ›› Issue (11): 4274-4285.DOI: 10.11949/0438-1157.20240583
• Separation engineering • Previous Articles Next Articles
Yewei MA1(), Yanna SUN1, Dong GAO2, Haibin WANG2, Shanjing YAO1, Dongqiang LIN1(
)
Received:
2024-05-30
Revised:
2024-07-15
Online:
2024-12-26
Published:
2024-11-25
Contact:
Dongqiang LIN
马烨玮1(), 孙艳娜1, 高栋2, 王海彬2, 姚善泾1, 林东强1(
)
通讯作者:
林东强
作者简介:
马烨玮(1999—),女,硕士研究生,mayewei2022@163.com
基金资助:
CLC Number:
Yewei MA, Yanna SUN, Dong GAO, Haibin WANG, Shanjing YAO, Dongqiang LIN. Model-assisted process evaluation and optimization of continuous chromatography for antibody capture[J]. CIESC Journal, 2024, 75(11): 4274-4285.
马烨玮, 孙艳娜, 高栋, 王海彬, 姚善泾, 林东强. 模型辅助的单抗连续捕获工艺分析和过程优化[J]. 化工学报, 2024, 75(11): 4274-4285.
步骤 | 溶液 | 保留时间/min | 体积/CV | 时间/min |
---|---|---|---|---|
冲洗 | 0.025 mol/L Tris + 0.025 mol/L NaCl缓冲液(pH 7.7) | 6 | 4 | 24 |
淋洗 | 0.5 mol/L磷酸盐缓冲液(pH 6.0) | 6 | 5 | 30 |
平衡 | 0.025 mol/L Tris + 0.025 mol/L NaCl缓冲液(pH 7.7) | 6 | 3 | 18 |
洗脱 | 0.15 mol/L醋酸缓冲液(pH 2.8) | 6 | 4 | 24 |
再生 | 0.1 mol/L NaOH溶液 | 6 | 5 | 30 |
再平衡 | 0.025 mol/L Tris + 0.025 mol/L NaCl缓冲液(pH 7.7) | 6 | 3 | 18 |
Table 1 Operation parameters of recovery and regeneration process units
步骤 | 溶液 | 保留时间/min | 体积/CV | 时间/min |
---|---|---|---|---|
冲洗 | 0.025 mol/L Tris + 0.025 mol/L NaCl缓冲液(pH 7.7) | 6 | 4 | 24 |
淋洗 | 0.5 mol/L磷酸盐缓冲液(pH 6.0) | 6 | 5 | 30 |
平衡 | 0.025 mol/L Tris + 0.025 mol/L NaCl缓冲液(pH 7.7) | 6 | 3 | 18 |
洗脱 | 0.15 mol/L醋酸缓冲液(pH 2.8) | 6 | 4 | 24 |
再生 | 0.1 mol/L NaOH溶液 | 6 | 5 | 30 |
再平衡 | 0.025 mol/L Tris + 0.025 mol/L NaCl缓冲液(pH 7.7) | 6 | 3 | 18 |
模型参数 | 数值 |
---|---|
ε | 0.38 |
εp | 0.52 |
Qmax/(g/L) | 130 |
Kd/(g/L) | 0.08 |
Dax/(10-7 m2/s) | 30 |
kf/(10-6 m/s) | 20 |
Ds/(10-14 m2/s) | 0.5 |
Dp/(10-12 m2/s) | 4.9 |
Table 2 Model parameters for protein A affinity chromatography
模型参数 | 数值 |
---|---|
ε | 0.38 |
εp | 0.52 |
Qmax/(g/L) | 130 |
Kd/(g/L) | 0.08 |
Dax/(10-7 m2/s) | 30 |
kf/(10-6 m/s) | 20 |
Ds/(10-14 m2/s) | 0.5 |
Dp/(10-12 m2/s) | 4.9 |
Fig.3 Process performance of CaptureSMB continuous capture(Color contour maps show the changes of productivity; Black-line contour maps show the changes of capacity utilization; Red dash lines represent the upper flow rate of the resin; Star points are the optimal operation points)
Fig.4 Process performance of 3C-PCC continuous capture(Color contour maps show the changes of productivity; Black-line contour maps show the changes of capacity utilization; Red dash line represents the boundary of phase Ⅰ-1 and phase Ⅰ-2; Blue dash line represents the boundary of phase Ⅱ and phase Ⅲ; Star points are the optimal operation points)
Fig.5 Process performance of 4C-PCC continuous capture(Color contour maps show the changes of productivity; Black-line contour maps show the changes of capacity utilization; Red dash line represents the boundary of phase Ⅰ-1 and phase Ⅰ-2; Blue dash line represents the boundary of phase Ⅱ and phase Ⅲ; Star points are the optimal operation points)
项目 | 批次层析 | 连续捕获 |
---|---|---|
纯度/% | 97.3 | 99.3 |
收率/% | 92.2 | 91.1 |
聚集体/% | 2.2 | 0.7 |
HCP LRV | 2.33 | 2.57 |
hcDNA LRV | 4.04 | 2.36 |
过程产率/(g/(L·h)) | 11.17 | 14.21 |
介质利用率/% | 59.9 | 89.9 |
缓冲液消耗/(L/g) | 0.55 | 0.35 |
Table 3 Comparison of batch and continuous separation performance
项目 | 批次层析 | 连续捕获 |
---|---|---|
纯度/% | 97.3 | 99.3 |
收率/% | 92.2 | 91.1 |
聚集体/% | 2.2 | 0.7 |
HCP LRV | 2.33 | 2.57 |
hcDNA LRV | 4.04 | 2.36 |
过程产率/(g/(L·h)) | 11.17 | 14.21 |
介质利用率/% | 59.9 | 89.9 |
缓冲液消耗/(L/g) | 0.55 | 0.35 |
1 | David L, Schwan P, Lobedann M, et al. Side-by-side comparability of batch and continuous downstream for the production of monoclonal antibodies[J]. Biotechnology and Bioengineering, 2020, 117(4): 1024-1036. |
2 | Mahal H, Branton H, Farid S S. End-to-end continuous bioprocessing: impact on facility design, cost of goods, and cost of development for monoclonal antibodies[J]. Biotechnology and Bioengineering, 2021, 118(9): 3468-3485. |
3 | Rathore A S, Thakur G, Kateja N. Continuous integrated manufacturing for biopharmaceuticals: a new paradigm or an empty promise?[J]. Biotechnology and Bioengineering, 2023, 120(2): 333-351. |
4 | 鲁伟, 应国清, 杨晓明, 等. 单克隆抗体工业生产中蛋白A亲和层析步骤的成本分析[J]. 高校化学工程学报, 2023, 37(2): 276-284. |
Lu W, Ying G Q, Yang X M, et al. Cost analysis of protein A affinity chromatography in industrial production of monoclonal antibody[J]. Journal of Chemical Engineering of Chinese Universities, 2023, 37(2): 276-284. | |
5 | FDA. Quality considerations for continuous manufacturing[EB/OL]. [2024-05-30]. . |
6 | ICH. Continuous manufacturing of drug substances and drug products Q13[EB/OL]. [2024-05-30]. . |
7 | 史策, 虞骥, 高栋, 等. 单抗制备的过程模拟和经济性分析[J]. 化工学报, 2018, 69(7): 3198-3207. |
Shi C, Yu J, Gao D, et al. Process simulation and economic evaluation of monoclonal antibody production[J]. CIESC Journal, 2018, 69(7): 3198-3207. | |
8 | Bielser J M, Wolf M, Souquet J, et al. Perfusion mammalian cell culture for recombinant protein manufacturing — a critical review[J]. Biotechnology Advances, 2018, 36(4): 1328-1340. |
9 | Matanguihan C, Wu P. Upstream continuous processing: recent advances in production of biopharmaceuticals and challenges in manufacturing[J]. Current Opinion in Biotechnology, 2022, 78: 102828. |
10 | 高宗晔, 史策, 姚善泾, 等. 双柱连续流层析亲和分离抗体的过程设计与应用[J]. 高校化学工程学报, 2019, 33(1): 117-127. |
Gao Z Y, Shi C, Yao S J, et al. Process design and application of twin-column continuous chromatography for antibody affinity separation[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(1): 117-127. | |
11 | Nicoud R M. The amazing ability of continuous chromatography to adapt to a moving environment[J]. Industrial & Engineering Chemistry Research, 2014, 53(10): 3755-3765. |
12 | 荆淑莹, 史策, 姚善泾, 等. 连续流层析及用于抗体分离的新进展[J]. 高校化学工程学报, 2021, 35(1): 1-12. |
Jing S Y, Shi C, Yao S J, et al. Progress on continuous chromatography and its application in antibody separation[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(1): 1-12. | |
13 | ChromaCon. Contichrom CUBE-versatile benchtop process development tool[EB/OL]. [2024-05-30]. . |
14 | Cytica. ÄKTA pcc and BioProcess pcc continuous chromatography systems[EB/OL]. [2024-05-30]. . |
15 | Sartorius. Continuous Chromatography-BIOSMB PD and BIOSMBProcess[EB/OL]. [2024-05-30]. . |
16 | Novasep. BioSC continuous chromatography for biologics[EB/OL]. [2024-05-30]. . |
17 | Semba. Octave 10 chromatography system[EB/OL]. [2024-05-30]. . |
18 | Mahajan E, George A, Wolk B. Improving affinity chromatography resin efficiency using semi-continuous chromatography[J]. Journal of Chromatography A, 2012, 1227: 154-162. |
19 | Angarita M, Müller-Späth T, Baur D, et al. Twin-column CaptureSMB: a novel cyclic process for protein A affinity chromatography[J]. Journal of Chromatography A, 2015, 1389: 85-95. |
20 | Gao Z Y, Zhang Q L, Shi C, et al. Antibody capture with twin-column continuous chromatography: effects of residence time, protein concentration and resin[J]. Separation and Purification Technology, 2020, 253: 117554. |
21 | Lin D Q, Zhang Q L, Yao S J. Model-assisted approaches for continuous chromatography: current situation and challenges[J]. Journal of Chromatography A, 2021, 1637: 461855. |
22 | Shi C, Chen X J, Jiao B, et al. Model-assisted process design for better evaluation and scaling up of continuous downstream bioprocessing[J]. Journal of Chromatography A, 2022, 1683: 463532. |
23 | Narayanan H, Luna M, Sokolov M, et al. Hybrid models based on machine learning and an increasing degree of process knowledge: application to capture chromatographic step[J]. Industrial & Engineering Chemistry Research, 2021, 60(29): 10466-10478. |
24 | Chopda V, Gyorgypal A, Yang O, et al. Recent advances in integrated process analytical techniques, modeling, and control strategies to enable continuous biomanufacturing of monoclonal antibodies[J]. Journal of Chemical Technology & Biotechnology, 2022, 97(9): 2317-2335. |
25 | Guo J, Jin M, Kanani D. Optimization of single-column batch and multicolumn continuous protein A chromatography and performance comparison based on mechanistic model[J]. Biotechnology Journal, 2020, 15(10): e2000192. |
26 | Shi C, Zhang Q L, Jiao B, et al. Process development and optimization of continuous capture with three-column periodic counter-current chromatography[J]. Biotechnology and Bioengineering, 2021, 118(9): 3313-3322. |
27 | Shi C, Gao Z Y, Zhang Q L, et al. Model-based process development of continuous chromatography for antibody capture: a case study with twin-column system[J]. Journal of Chromatography A, 2020, 1619: 460936. |
28 | Sun Y N, Shi C, Zhang Q L, et al. Model-based process development and evaluation of twin-column continuous capture processes with protein A affinity resin[J]. Journal of Chromatography A, 2020, 1625: 461300. |
29 | Sun Y N, Shi C, Zhang Q L, et al. Comparison of protein A affinity resins for twin-column continuous capture processes: process performance and resin characteristics[J]. Journal of Chromatography A, 2021, 1654: 462454. |
30 | Sun Y N, Shi C, Zhong X Z, et al. Model-based evaluation and model-free strategy for process development of three-column periodic counter-current chromatography[J]. Journal of Chromatography A, 2022, 1677: 463311. |
31 | 史策. 模型辅助的连续流层析过程开发和抗体分离应用研究[D]. 杭州: 浙江大学, 2021. |
Shi C. Model-assisted process development of continuous chromatography and its applications for antibody separation[D]. Hangzhou: Zhejiang University, 2021. |
[1] | Xinchen XIANG, Dan LU, Ying ZHAO, Zhikan YAO, Ruiqiang KOU, Danjun ZHENG, Zhijun ZHOU, Lin ZHANG. Preparation of highly positively charged NF membranes with surface quaternization modification and Li+/Mg2+ separation performance [J]. CIESC Journal, 2025, (): 1-10. |
[2] | Mengxing YUAN, Lin SUN, Xionglin LUO. Variable correlation analysis and full-cycle operation optimization of a multi-effect evaporative desalination system [J]. CIESC Journal, 2024, (): 1-15. |
[3] | Lingya YUAN, Ying ZHANG. The growth of PV sector in China and its implications for the resource and environmental sustainability [J]. CIESC Journal, 2024, 75(S1): 14-24. |
[4] | Jingxian HUA, Yurong LUO, Yawei GU, Tingting Wu, Yichang PAN, Weihong XING. Preparation of ultra-thin oriented ZIF-8 membrane for efficient ethylene/ethane separation [J]. CIESC Journal, 2024, (): 1-14. |
[5] | Bingbing GAO, Nuo XU, Yunxiang BAI, Chunfang ZHANG, Yongqiang YANG, Liangliang DONG. Polymeric membranes for helium separation [J]. CIESC Journal, 2024, (): 1-17. |
[6] | Jialang HU, Mingyuan JIANG, Lvming JIN, Yonggang ZHANG, Peng HU, Hongbing JI. Machine learning-assisted high-throughput computational screening of MOFs and advances in gas separation research [J]. CIESC Journal, 2024, (): 1-24. |
[7] | Ji LI, Jiacai WANG, Yongqiang MA, Haibin YUAN, Luming JIAN, Jican JIANG, Jiahua ZHU. Thermodynamic analysis and engineering practice of high efficiently recycle of fluorine contained in tail gas from wet-process phosphoric acid plant [J]. CIESC Journal, 2024, (): 1-9. |
[8] | Jing ZHAO, Gongping LIU, Wanqin JIN, Nanping XU. Precision construction and application of separation membranes based on confined mass transfer mechanism [J]. CIESC Journal, 2024, 75(11): 3857-3869. |
[9] | Tianyu GU, Xianfu CHEN, Siqi WANG, Peng XU, Minghui QIU, Yiqun FAN. Application of membranes for separation and purification of Eucommiaulmoides active ingredients [J]. CIESC Journal, 2024, 75(11): 4005-4019. |
[10] | Zhengya DONG, Xiaojing ZHU, Jingfu JIA, Jie ZHANG, Zhuotao ZHENG, Xiaolin LIU, Zhilin WU. Scale-up of ultrasonic microreactor systems and their applications in the preparation of nanomaterials [J]. CIESC Journal, 2024, 75(11): 4095-4119. |
[11] | Maoxian WANG, Qidian SUN, Zhe FU, Fang HUA, Ye JI, Yi CHENG. Understanding pyrolysis process of polyethylene by combined method of molecular-level kinetic model with machine learning [J]. CIESC Journal, 2024, 75(11): 4320-4332. |
[12] | Mi FENG, Jie ZHANG, Xingmei LYU. One-step extraction and separation of high purity chitin based on choline ionic liquid [J]. CIESC Journal, 2024, 75(11): 4286-4297. |
[13] | Wenna TANG, Hongchen LIU, Xiaotian MI, Liewei QIU, Mei YANG, Guangwen CHEN. Experimental investigation of droplet formation in microchannel device with an embedded microsieve [J]. CIESC Journal, 2024, 75(11): 4188-4195. |
[14] | Jian RUAN, Shuang LI, Zhenghui WEN. Application of automation and artificial intelligence in flow chemistry [J]. CIESC Journal, 2024, 75(11): 4120-4140. |
[15] | Luyao WANG, Guangyong ZHANG, Haixin YU, Xuancheng ZHANG, Yan HUANG, Yuchao ZHAO. Preparation of poly(tetrafluoroethylene-co-hexafluoropropylene) hollow fiber composite membrane for dye/inorganic salt separation [J]. CIESC Journal, 2024, 75(11): 4309-4319. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 78
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 201
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||