CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 584-595.DOI: 10.11949/0438-1157.20240691
• Fluid dynamics and transport phenomena • Previous Articles
Jinhao BAI(), Xiaoping GUAN(
), Ning YANG(
)
Received:
2024-06-21
Revised:
2024-08-27
Online:
2025-03-10
Published:
2025-03-25
Contact:
Xiaoping GUAN, Ning YANG
通讯作者:
管小平,杨宁
作者简介:
白谨豪(1996—),男,博士研究生,jhbai@ipe.ac.cn
基金资助:
CLC Number:
Jinhao BAI, Xiaoping GUAN, Ning YANG. Analysis and optimization of flow characteristics in a filter-press water electrolyzer mastoid plate[J]. CIESC Journal, 2025, 76(2): 584-595.
白谨豪, 管小平, 杨宁. 压滤式水电解槽乳突板内的流动特性分析与优化[J]. 化工学报, 2025, 76(2): 584-595.
参数 | 数值 |
---|---|
进出口宽度 / mm | 10 |
进出口高度 / mm | 7.5 |
进出口深度 / mm | 20 |
凹单元个数 | 105 |
凸单元个数 | 112 |
凹凸单元直径 / mm | 15 |
流道直径 / mm | 380 |
Table 1 Computational domain structural parameters
参数 | 数值 |
---|---|
进出口宽度 / mm | 10 |
进出口高度 / mm | 7.5 |
进出口深度 / mm | 20 |
凹单元个数 | 105 |
凸单元个数 | 112 |
凹凸单元直径 / mm | 15 |
流道直径 / mm | 380 |
Fig.9 (a) Relative standard deviation of velocity at different Y cross-sections for different structures; (b) Overall average value of the relative standard deviation of velocity
1 | Zhang X Q. The development trend of and suggestions for China's hydrogen energy industry[J]. Engineering, 2021, 7(6): 719-721. |
2 | Yue M L, Lambert H, Pahon E, et al. Hydrogen energy systems: a critical review of technologies, applications, trends and challenges[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111180. |
3 | Maier M, Smith K, Dodwell J, et al. Mass transport in PEM water electrolysers: a review[J]. International Journal of Hydrogen Energy, 2022, 47(1): 30-56. |
4 | Hughes J P, Clipsham J, Chavushoglu H, et al. Polymer electrolyte electrolysis: a review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110709. |
5 | Guan X P, Bai J H, Zhang J C, et al. Multiphase flow in PEM water electrolyzers: a mini-review[J]. Current Opinion in Chemical Engineering, 2023, 43:100988. |
6 | Zhang J C, Guan X P, Yang N. Lattice Boltzmann simulation of oxygen removal from anode porous transport layer in proton exchange membrane electrolyzer[J]. Chemical Engineering Science, 2024, 295: 120140. |
7 | 刘志鹏,赵长颖,吴睿,等. 基于水电解制氢的梯度多孔传输层中气液流动可视化实验研究[J]. 化工学报, 2024, 75(2): 520-530. |
Liu Z P, Zhao C Y, Wu R, et al. Experimental study of gas-liquid flow visualization in gradient porous transport layers based on hydrogen production by water electrolysis[J]. CIESC Journal, 2024, 75(2): 520-530. | |
8 | Bai J H, Li Z F, Zhang J C, et al. Proton exchange membrane water electrolysis at high current densities: response time and gas-water distribution[J]. AIChE Journal, 2023, 69(12): e18223. |
9 | 蔡炽柳. 氢能及其应用前景分析[J]. 能源与环境, 2008(5): 39-41. |
Cai C L. Analysis of hydrogen energy and its application prospect[J]. Energy and Environment, 2008(5): 39-41. | |
10 | Schalenbach M, Kasian O, Mayrhofer K J J. An alkaline water electrolyzer with nickel electrodes enables efficient high current density operation[J]. International Journal of Hydrogen Energy, 2018, 43(27): 11932-11938. |
11 | Xu W W, Lu Z Y, Wan P B, et al. High-performance water electrolysis system with double nanostructured superaerophobic electrodes[J]. Small, 2016, 12(18): 2492-2498. |
12 | Xiang C X, Papadantonakis K M, Lewis N S. Principles and implementations of electrolysis systems for water splitting[J]. Materials Horizons, 2016, 3(3): 169-173. |
13 | Rocha F, Delmelle R, Georgiadis C, et al. Effect of pore size and electrolyte flow rate on the bubble removal efficiency of 3D pure Ni foam electrodes during alkaline water electrolysis[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107648. |
14 | Yang Y, De La Torre B, Stewart K, et al. The scheduling of alkaline water electrolysis for hydrogen production using hybrid energy sources[J]. Energy Conversion and Management, 2022, 257: 115408. |
15 | 李军. 压滤式电解槽电解单元内流动特性的模拟研究[D]. 北京: 中国石油大学(北京), 2020. |
Li J. Simulation study on flow characteristics in electrolysis unit of filter-press electrolyzer[D]. Beijing: China University of Petroleum, 2020. | |
16 | Rao Y, Xu Y M, Wan C Y. An experimental and numerical study of flow and heat transfer in channels with pin fin-dimple and pin fin arrays[J]. Experimental Thermal and Fluid Science, 2012, 38: 237-247. |
17 | Xie G N, Liu J, Ligrani P M, et al. Numerical analysis of flow structure and heat transfer characteristics in square channels with different internal-protruded dimple geometrics[J]. International Journal of Heat and Mass Transfer, 2013, 67: 81-97. |
18 | De Haro Ruiz D, Sasmito A P, Shamim T. Numerical investigation of the high temperature PEM electrolyzer: effect of flow channel configurations[J]. ECS Transactions, 2013, 58(2): 99-112. |
19 | 李军, 王娟, 张佳, 等. 极板凹凸结构形状对电解槽内部流动特性的影响[J]. 过程工程学报, 2021, 21(3): 251-258. |
Li J, Wang J, Zhang J, et al. Effects of pole plate's concave-convex shapes on flow characteristics in water electrolyzer[J]. The Chinese Journal of Process Engineering, 2021, 21(3): 251-258. | |
20 | Rao Y, Feng Y, Li B, et al. Experimental and numerical study of heat transfer and flow friction in channels with dimples of different shapes[J]. Journal of Heat Transfer, 2015, 137(3): 031901. |
21 | Elyyan M A, Rozati A, Tafti D K. Investigation of dimpled fins for heat transfer enhancement in compact heat exchangers[J]. International Journal of Heat and Mass Transfer, 2008, 51(11/12): 2950-2966. |
22 | Hwang S D, Kwon H G, Cho H H. Local heat transfer and thermal performance on periodically dimple-protrusion patterned walls for compact heat exchangers[J]. Energy, 2010, 35(12): 5357-5364. |
23 | Chen Y, Chew Y T, Khoo B C. Heat transfer and flow structure on periodically dimple–protrusion patterned walls in turbulent channel flow[J]. International Journal of Heat and Mass Transfer, 2014, 78: 871-882. |
24 | 王娟, 李军, 邹槊, 等. 压滤式水电解槽微通道内球凸-球凹结构绕流特性的模拟[J]. 过程工程学报, 2020, 20(3): 294-301. |
Wang J, Li J, Zou S, et al. Simulation on flow characteristics of spherical convex–concave structure in microchannel of pressure-filtered water electrolyzer[J]. The Chinese Journal of Process Engineering, 2020, 20(3): 294-301. | |
25 | Wang T, Wang J Y, Wang P J, et al. Non-uniform liquid flow distribution in an alkaline water electrolyzer with concave-convex bipolar plate (CCBP): a numerical study[J]. International Journal of Hydrogen Energy, 2023, 48(33): 12200-12214. |
26 | Wang T, Wang J Y, Wang P J, et al. Plate structure design guideline for commercial alkaline water electrolyzers (AWEs) with improved liquid flow uniformity: multi-scale quantitative criteria and experimental validation[J]. International Journal of Hydrogen Energy, 2024, 49: 907-924. |
27 | Rodrigues A E. Residence time distribution (RTD) revisited[J]. Chemical Engineering Science, 2021, 230: 116188. |
28 | Gao Y J, Muzzio F J, Ierapetritou M G. A review of the residence time distribution (RTD) applications in solid unit operations[J]. Powder Technology, 2012, 228: 416-423. |
29 | Saravanathamizhan R, Paranthaman R, Balasubramanian N, et al. Residence time distribution in continuous stirred tank electrochemical reactor[J]. Chemical Engineering Journal, 2008, 142(2): 209-216. |
30 | Rivera F F, Pérez T, Castañeda L F, et al. Mathematical modeling and simulation of electrochemical reactors: a critical review[J]. Chemical Engineering Science, 2021, 239: 116622. |
[1] | Xiaohang ZHONG, Wei XU, Wen ZHANG, Li XU, Yuxin WANG. A critical review on the effects of Fe impurity on H2 production via alkaline water electrolysis [J]. CIESC Journal, 2025, 76(2): 519-531. |
[2] | Fei LU, Bona LU, Guangwen XU. Analysis of criteria for ideal flow patterns in gas-solid micro fluidized bed reaction analyzer [J]. CIESC Journal, 2024, 75(6): 2201-2213. |
[3] | Zhipeng LIU, Changying ZHAO, Rui WU, Zhihao ZHANG. Experimental study of gas-liquid flow visualization in gradient porous transport layers based on hydrogen production by water electrolysis [J]. CIESC Journal, 2024, 75(2): 520-530. |
[4] | Nan TU, Xiaoqun LIU, Chiyu WANG, Jiabin FANG. Study on adaptability of scaling law to residence time distribution in bubbling fluidized beds with continuous operation [J]. CIESC Journal, 2024, 75(2): 543-552. |
[5] | Maobin PANG, Zi’ang XU, Yihan ZHEN, Qin XU, Dongcheng LIN, Jing LIU, Baoguo WANG. Recent progress of strategies for enhancing ion transport in anion exchange membranes [J]. CIESC Journal, 2024, 75(11): 3987-4004. |
[6] | Zihao ZHONG, Sai'er LIU, Minjing SHANG, Yuanhai SU. Flow characteristics and micromixing performance of micro-CSTR with magnetic stirring [J]. CIESC Journal, 2024, 75(11): 4217-4225. |
[7] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[8] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[9] | Jing ZHAO, Bogeng LI, Zhiyang BU, Hong FAN. Research on residence time distribution of the low-viscous polymer fluid in microchannel [J]. CIESC Journal, 2021, 72(8): 4030-4038. |
[10] | Zi'ang XU, Lei WAN, Kai LIU, Baoguo WANG. Recent progress of molecular design for highly stable alkaline anion exchange membranes [J]. CIESC Journal, 2021, 72(8): 3891-3906. |
[11] | HU Dandan, GENG Sulong, ZENG Xi, WANG Fang, YUE Junrong, XU Guangwen. Gas back-mixing characteristics and the effects on gas-solid reaction behavior and activation energy characterization [J]. CIESC Journal, 2021, 72(3): 1354-1363. |
[12] | HUANG Zhengliang, WANG Chao, GUO Yanni, YANG Yao, SUN Jingyuan, WANG Jingdai, YANG Yongrong. Investigation of secondary flow in helical coils based on residence time distribution [J]. CIESC Journal, 2021, 72(2): 921-927. |
[13] | LAN Bin, XU Ji, LIU Zhicheng, WANG Junwu. Simulation of scale-up effect of particle residence time distribution characteristics in continuously operated dense-phase fluidized beds [J]. CIESC Journal, 2021, 72(1): 521-533. |
[14] | Fengguo TIAN, Tian ZHU, Dezheng KONG, Ming LEI. Residence time of large particles in fluidized beds with non-uniform gas introducing [J]. CIESC Journal, 2020, 71(4): 1520-1527. |
[15] | Pan XIONG, Shuguang YAN, Weiyin LIU. Structure optimization of cyclone based on response surface method [J]. CIESC Journal, 2019, 70(1): 154-160. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 82
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 152
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||