CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1534-1544.DOI: 10.11949/0438-1157.20241153
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Received:
2024-10-18
Revised:
2024-11-27
Online:
2025-05-12
Published:
2025-04-25
Contact:
Cong QI
通讯作者:
齐聪
作者简介:
齐聪(1983—),男,博士,副教授,qicong@cumt.edu.cn
基金资助:
CLC Number:
Cong QI, Linfei YUE. Heat transfer characteristics of interwoven network minichannel heat sinks[J]. CIESC Journal, 2025, 76(4): 1534-1544.
齐聪, 岳林菲. 交织网状小通道热沉的传热特性[J]. 化工学报, 2025, 76(4): 1534-1544.
Fig.1 Schematic diagram of interwoven network minichannels: (a) interwoven square minichannel (ISM); (b) interwoven square coupled honeycomb minichannel (ISCHM)
L1/mm | L2/mm | L3/mm | L4/mm | L5/mm | L6/mm | L7/mm | H/mm |
---|---|---|---|---|---|---|---|
2.00 | 2.68 | 2.31 | 2.89 | 1.00 | 1.74 | 2.31 | 1.00 |
Table 1 Minichannel geometric parameters
L1/mm | L2/mm | L3/mm | L4/mm | L5/mm | L6/mm | L7/mm | H/mm |
---|---|---|---|---|---|---|---|
2.00 | 2.68 | 2.31 | 2.89 | 1.00 | 1.74 | 2.31 | 1.00 |
材料 | ρ/(kg⋅m-3) | cp /(J⋅kg-1⋅K-1) | μ/(Pa⋅s) | λ/(W⋅m-1⋅K-1) |
---|---|---|---|---|
铜 Fe3O4 纳米颗粒 | 8978 5180 | 381 670 | — — | 386 80 |
ψm=0 (去离子水) | 997.1 | 4179 | 0.001 | 0.6130 |
ψm=0.1% 纳米流体[ | 997.9 | 4178.32 | 0.001029 | 0.6136 |
ψm=0.3% 纳米流体[ | 999.5 | 4176.97 | 0.001083 | 0.6140 |
ψm=0.5% 纳米流体[ | 1001.1 | 4175.61 | 0.001141 | 0.6147 |
Table 2 Thermophysical parameters of materials
材料 | ρ/(kg⋅m-3) | cp /(J⋅kg-1⋅K-1) | μ/(Pa⋅s) | λ/(W⋅m-1⋅K-1) |
---|---|---|---|---|
铜 Fe3O4 纳米颗粒 | 8978 5180 | 381 670 | — — | 386 80 |
ψm=0 (去离子水) | 997.1 | 4179 | 0.001 | 0.6130 |
ψm=0.1% 纳米流体[ | 997.9 | 4178.32 | 0.001029 | 0.6136 |
ψm=0.3% 纳米流体[ | 999.5 | 4176.97 | 0.001083 | 0.6140 |
ψm=0.5% 纳米流体[ | 1001.1 | 4175.61 | 0.001141 | 0.6147 |
网格数量/个 | Δp/Pa | 误差/% | ΔT/K | 误差/% |
---|---|---|---|---|
181728 422967 | 59.49 59.34 | 2.4 2.7 | 19.67 19.44 | 5.5 4.3 |
731137 | 59.6 | 2.2 | 18.56 | 0.43 |
1883974 | 59.93 | 1.6 | 18.62 | 0.07 |
5609506 | 60.96 | — | 18.64 | — |
Table 3 Grid independence verification
网格数量/个 | Δp/Pa | 误差/% | ΔT/K | 误差/% |
---|---|---|---|---|
181728 422967 | 59.49 59.34 | 2.4 2.7 | 19.67 19.44 | 5.5 4.3 |
731137 | 59.6 | 2.2 | 18.56 | 0.43 |
1883974 | 59.93 | 1.6 | 18.62 | 0.07 |
5609506 | 60.96 | — | 18.64 | — |
1 | Zhang X L, Ji Z, Wang J F, et al. Research progress on structural optimization design of microchannel heat sinks applied to electronic devices[J]. Applied Thermal Engineering, 2023, 235: 121294. |
2 | Hazra S, Wei T W, Lin Y, et al. Parametric design analysis of a multi-level 3D manifolded microchannel cooler via reduced order numerical modeling[J]. International Journal of Heat and Mass Transfer, 2022, 197: 123356. |
3 | Kong R, Zhang H N, Tang M S, et al. Enhancing data center cooling efficiency and ability: a comprehensive review of direct liquid cooling technologies[J]. Energy, 2024, 308: 132846. |
4 | Liu Y, Lv S Q, Cui Q L, et al. Device packaging and integration optimization based on neural network method: effect of microchannel structure on heat sink performance[J]. Materials Science in Semiconductor Processing, 2025, 185: 108977. |
5 | Harris M, Wu H W, Zhang W B, et al. Overview of recent trends in microchannels for heat transfer and thermal management applications[J]. Chemical Engineering and Processing-Process Intensification, 2022, 181: 109155. |
6 | 陈彦松, 阮达, 刘渊博, 等. 微通道换热器拓扑结构优化与性能研究[J]. 化工学报, 2024, 75(3): 823-835. |
Chen Y S, Ruan D, Liu Y B, et al. Topology optimization and performance research of microchannel heat exchangers[J]. CIESC Journal, 2024, 75(3): 823-835. | |
7 | Yue L F, Qi C, Tang M Q. A novel composite bionic leaf vein and honeycomb microchannel heat sink applied for thermal management of electronic components[J]. Applied Thermal Engineering, 2024, 252: 123716. |
8 | Yue L F, Qi C, Tang M Q. Cooling characteristics of nanofluids in a snowflake and squid fin composite bionic microchannel heat sink[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2025, 705: 135614. |
9 | Kirsch K L, Thole K A. Isolating the effects of surface roughness versus wall shape in numerically optimized, additively manufactured micro cooling channels[J]. Experimental Thermal and Fluid Science, 2018, 98: 227-238. |
10 | Zhang Y B. Effect of wall surface roughness on mass transfer in a nano channel[J]. International Journal of Heat and Mass Transfer, 2016, 100: 295-302. |
11 | Hall P. An instability mechanism for channel flows in the presence of wall roughness[J]. Journal of Fluid Mechanics, 2020, 899: R2. |
12 | Liu C, Zhou J H, Cheng K, et al. Flow thermohydraulic characterization of open diverging microchannel heat sink for high heat flux dissipation[J]. Applied Thermal Engineering, 2023, 227: 120396. |
13 | Sun L, Li J, Xu H, et al. Numerical study on heat transfer and flow characteristics of novel microchannel heat sinks[J]. International Journal of Thermal Sciences, 2022, 176: 107535. |
14 | Zhang J Q, Zou Z P, Fu C. A review of the complex flow and heat transfer characteristics in microchannels[J]. Micromachines, 2023, 14(7): 1451. |
15 | Vasilev M P, Abiev R S, Kumar R. Effect of microchannel heat sink configuration on the thermal performance and pumping power[J]. International Journal of Heat and Mass Transfer, 2019, 141: 845-854. |
16 | Zhang C B, Chen Y P, Wu R, et al. Flow boiling in constructal tree-shaped minichannel network[J]. International Journal of Heat and Mass Transfer, 2011, 54(1/2/3): 202-209. |
17 | 张弛, 吴慧英, 黄后学. 硅基正弦波纹微通道内的流动阻力特性[J]. 化工学报, 2012, 63(4): 1011-1018. |
Zhang C, Wu H Y, Huang H X. Flow friction in silicon-based sinusoidal wavy microchannels[J]. CIESC Journal, 2012, 63(4): 1011-1018. | |
18 | 赵光攀, 向立平, 罗振兵, 等. 不同结构形式双层微通道热沉的传热性能[J]. 工程热物理学报, 2023, 44(8): 2217-2223. |
Zhao G P, Xiang L P, Luo Z B, et al. Heat transfer performance of double-layered microchannel heat sinks with different structures[J]. Journal of Engineering Thermophysics, 2023, 44(8): 2217-2223. | |
19 | 陈巨辉, 苏潼, 李丹, 等. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
Chen J H, Su T, Li D, et al. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers[J]. CIESC Journal, 2024, 75(9): 3122-3132. | |
20 | 陈超伟, 柳洋, 杜文静, 等. 局部热点下微肋通道流动传热特性[J]. 化工学报, 2024, 75(9): 3113-3121. |
Chen C W, Liu Y, Du W J, et al. Flow and heat transfer characteristics of micro ribs channel with local hot spots[J]. CIESC Journal, 2024, 75(9): 3113-3121. | |
21 | 刘 萍, 邱雨生, 李世靖, 等. 微通道内纳米流体传热流动特性[J].化工学报, 2025, 76(1): 184-197. |
Liu P, Qiu Y S, Li S J, et al. Heat transfer and flow characteristics of nanofluids in microchannels [J]. CIESC Journal, 2025, 76(1): 184-197. | |
22 | Deng Y W, Feng C L, E J Q, et al. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: a review[J]. Applied Thermal Engineering, 2018, 142: 10-29. |
23 | Kumar L H, Kazi S N, Masjuki H H, et al. A review of recent advances in green nanofluids and their application in thermal systems[J]. Chemical Engineering Journal, 2022, 429: 132321. |
24 | Ganvir R B, Walke P V, Kriplani V M. Heat transfer characteristics in nanofluid—a review[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 451-460. |
25 | Masuda H, Ebata A, Teramae K, et al. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles[J]. Netsu Bussei, 1993, 7(4): 227-233. |
26 | Mukherjee S, Wciślik S, Khadanga V, et al. Influence of nanofluids on the thermal performance and entropy generation of varied geometry microchannel heat sink[J]. Case Studies in Thermal Engineering, 2023, 49: 103241. |
27 | Khan M Z U, Younis M Y, Akram N, et al. Investigation of heat transfer in wavy and dual wavy micro-channel heat sink using alumina nanoparticles[J]. Case Studies in Thermal Engineering, 2021, 28: 101515. |
28 | Younes H, Mao M Y, Sohel Murshed S M, et al. Nanofluids: key parameters to enhance thermal conductivity and its applications[J]. Applied Thermal Engineering, 2022, 207: 118202. |
29 | Nada S A, El-Zoheiry R M, Elsharnoby, et al. Enhancing the thermal performance of different flow configuration minichannel heat sink using Al2O3 and CuO-water nanofluids for electronic cooling: an experimental assessment [J]. International Journal of Thermal Sciences, 2022, 181: 107767. |
30 | Tu J L, Qi C, Tang Z B, et al. Experimental study on the influence of bionic channel structure and nanofluids on power generation characteristics of waste heat utilisation equipment[J]. Applied Thermal Engineering, 2022, 202: 117893. |
31 | Ali A M, Rona A, Kadhim H T, et al. Thermo-hydraulic performance of a circular microchannel heat sink using swirl flow and nanofluid[J]. Applied Thermal Engineering, 2021, 191: 116817. |
32 | Pak B C, Cho Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer, 1998, 11(2): 151-170. |
33 | Qi C, Tang J H, Fan F, et al. Effects of magnetic field on thermo-hydraulic behaviors of magnetic nanofluids in CPU cooling system[J]. Applied Thermal Engineering, 2020, 179: 115717. |
34 | Huang J, Li L J, Yang J L, et al. Experimental study on the bionic microchannel heat sink integrated with a piezoelectric pump[J]. Applied Thermal Engineering, 2024, 240: 122282. |
35 |
陈宏瑜, 田茂诚, 冷学礼, 等. 基于![]() |
Chen H Y, Tian M C, Leng X L, et al. Optimization and field synergy analysis for inner flow field of curved tube based on entransy extreme principle[J]. CIESC Journal, 2011, 62(11): 3088-3092. | |
36 | Omidi M, Farhadi M, Jafari M. A comprehensive review on double pipe heat exchangers[J]. Applied Thermal Engineering, 2017, 110: 1075-1090. |
37 | 张晓屿, 刘志春, 刘伟, 等. 圆管内插入多个螺旋片的传热与流动的数值模拟研究[J]. 工程热物理学报, 2013, 34(2): 310-313. |
Zhang X Y, Liu Z C, Liu W, et al. Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple helical screw tapes[J]. Journal of Engineering Thermophysics, 2013, 34(2): 310-313. | |
38 | Wang Y W, Sun L, Qi C, et al. Topology optimization of a novel bionic fractal microchannel applied in thermal management of electronic components[J]. Asia-Pacific Journal of Chemical Engineering, 2023, 18(3): 1-14. |
[1] | Rui SUN, Junfeng WANG, Haojie XU, Bufa LI, Yaxian XU. Research progress on heat transfer enhancement mechanism of spray cooling technology [J]. CIESC Journal, 2025, 76(4): 1404-1421. |
[2] | Deqi PENG, Kuilin LIU, Yang WU, Tianlan YU, Zhuowei TAN, Shuying WU, Ying CHEN, Mingcheng TANG, Jianguo PENG. Enhanced heat transfer performance of vibrating reciprocating helix and micro-morphological analysis of crystallization scale [J]. CIESC Journal, 2025, 76(4): 1559-1568. |
[3] | Xiangrui ZHAI, Wei ZHANG, Qianqian ZHANG, Jiuzhe QU, Xufei YANG, Yajun DENG, Bo YU. Active heat transfer enhancement technology for solid-liquid phase change energy storage based on external field disturbance [J]. CIESC Journal, 2025, 76(4): 1432-1446. |
[4] | Jiayuan FAN, Wenhui ZENG, Zhichao REN, Wentao ZHANG, Shuang LYU. Preparation and heat transfer enhancement of phase change slurry with multi-phase change temperature [J]. CIESC Journal, 2025, 76(4): 1863-1874. |
[5] | Lu LIU, Kai WAN, Wenyue WANG, Tai WANG, Jiancheng TANG, Shaoheng WANG. Study on orthohydrogen and parahydrogen conversion coupled flow and heat transfer based on helium expansion refrigeration [J]. CIESC Journal, 2025, 76(4): 1513-1522. |
[6] | Yichen ZHANG, Wenbiao ZHANG, Haoyang LI, Xiaoyang NING. Flow measurement of gas-liquid two-phase CO2 using Venturi tube based on dual differential pressure model [J]. CIESC Journal, 2025, 76(4): 1493-1503. |
[7] | Shaoyang MA, Hanzhuo XU, Liangliang ZHANG, Baochang SUN, Haikui ZOU, Yong LUO, Guangwen CHU. Research progress of liquid-liquid heterogeneous reactions and intensification methods towards their transfer processes [J]. CIESC Journal, 2025, 76(4): 1391-1403. |
[8] | Dongliang XU, Binbin ZHAO, Yimei SUN, Tingting LIU, Xiaoran LIU, Minggong CHEN. Simulation and optimal design of RPB based on modified porous medium model [J]. CIESC Journal, 2025, 76(4): 1569-1582. |
[9] | Fengshi XU, Lisheng CHENG, Xiahua ZUO, Xiaoyu YU, Hua YAN, Weimin YANG, Ying AN. Simulation study on the photothermal conversion performance of water-based carbon black nanofluid under swirling flow [J]. CIESC Journal, 2025, 76(4): 1523-1533. |
[10] | Luochang WU, Zeyu YANG, Jianguo YAN, Xutao ZHU, Yang CHEN, Zichen WANG. Experimental study on convection heat transfer characteristics of supercritical carbon dioxide flowing in mini square channels [J]. CIESC Journal, 2025, 76(4): 1583-1594. |
[11] | Xiankai ZHANG, Boyu WANG, Yali GUO, Shengqiang SHEN. Calculation and analysis of thermal performance of horizontal circular tube falling film evaporative condenser [J]. CIESC Journal, 2025, 76(3): 995-1005. |
[12] | Haochen TIAN, Zhixian MA, Zhihao WANG. Film condensation heat transfer characteristics of R1234ze(E) on a horizontal three-dimensional finned tube [J]. CIESC Journal, 2025, 76(3): 975-984. |
[13] | Yaqi HOU, Wei ZHANG, Hong ZHANG, Feiyu GAO, Jiahua HU. Optimization of LBM multiphase flow models based on machine learning and particle swarm algorithm [J]. CIESC Journal, 2025, 76(3): 1120-1132. |
[14] | Qin SUN, Guoqing ZHOU, Wanling ZHAI, Shan GAO, Qianqian LUO, Jian QU. Heat transfer characteristics of topology optimized channel flat-plate pulsating heat pipe under local multiple heat sources [J]. CIESC Journal, 2025, 76(3): 1006-1017. |
[15] | Yiming ZHANG, Peng YANG, Xianbing JI, Jixing REN, Lei ZHANG, Zheng MIAO. Thermal performance of multi-loop flat loop heat pipes [J]. CIESC Journal, 2025, 76(3): 1018-1028. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 85
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||