CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1742-1753.DOI: 10.11949/0438-1157.20240945
• Energy and environmental engineering • Previous Articles Next Articles
Dongling XU1(), Yue MA1,2, Lu GONG1,2, Guili MA1, Jinke WANG1, Fengzhi GUO1, Haolun WANG1, Sijia LI1, Shuyuan LI1,2, Changtao YUE1,2(
)
Received:
2024-08-22
Revised:
2025-01-08
Online:
2025-05-12
Published:
2025-04-25
Contact:
Changtao YUE
徐东菱1(), 马跃1,2, 龚露1,2, 马桂丽1, 王金可1, 郭丰志1, 王浩伦1, 李思佳1, 李术元1,2, 岳长涛1,2(
)
通讯作者:
岳长涛
作者简介:
徐东菱(1998—),女,博士研究生,xdl9807@163.com
CLC Number:
Dongling XU, Yue MA, Lu GONG, Guili MA, Jinke WANG, Fengzhi GUO, Haolun WANG, Sijia LI, Shuyuan LI, Changtao YUE. Co-pyrolysis study of oil shale and bituminous coal in fixed fluidized bed reactor[J]. CIESC Journal, 2025, 76(4): 1742-1753.
徐东菱, 马跃, 龚露, 马桂丽, 王金可, 郭丰志, 王浩伦, 李思佳, 李术元, 岳长涛. 油页岩与烟煤混合流化热解实验研究[J]. 化工学报, 2025, 76(4): 1742-1753.
样品 | 工业分析/ %(收到基,质量) | 元素分析/ %(干基,质量) | |||||||
---|---|---|---|---|---|---|---|---|---|
表面水 | 灰分 | 挥发分 | 固定碳 | 碳 | 氢 | 氧 | 氮 | 硫 | |
油页岩 | 3.01 | 39.39 | 33.57 | 24.03 | 49.09 | 5.06 | 12.34 | 1.51 | 0.77 |
烟煤 | 6.97 | 5.55 | 35.40 | 52.08 | 66.96 | 5.15 | 24.66 | 1.89 | 0.47 |
Table 1 The proximate analysis and ultimate analysis of oil shale and bituminous coal
样品 | 工业分析/ %(收到基,质量) | 元素分析/ %(干基,质量) | |||||||
---|---|---|---|---|---|---|---|---|---|
表面水 | 灰分 | 挥发分 | 固定碳 | 碳 | 氢 | 氧 | 氮 | 硫 | |
油页岩 | 3.01 | 39.39 | 33.57 | 24.03 | 49.09 | 5.06 | 12.34 | 1.51 | 0.77 |
烟煤 | 6.97 | 5.55 | 35.40 | 52.08 | 66.96 | 5.15 | 24.66 | 1.89 | 0.47 |
样品 | 成分/%(质量) | |||||||
---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | Fe2O3 | SO3 | Na2O | K2O | MgO | |
油页岩 | 74.61 | 6.57 | 6.41 | 4.40 | 2.93 | 2.53 | 0.59 | 0.45 |
烟煤 | 20.59 | 18.82 | 13.01 | 7.27 | 20.90 | 15.18 | 0.61 | 1.68 |
Table 2 XRF composition analysis of oil shale and bituminous coal
样品 | 成分/%(质量) | |||||||
---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | Fe2O3 | SO3 | Na2O | K2O | MgO | |
油页岩 | 74.61 | 6.57 | 6.41 | 4.40 | 2.93 | 2.53 | 0.59 | 0.45 |
烟煤 | 20.59 | 18.82 | 13.01 | 7.27 | 20.90 | 15.18 | 0.61 | 1.68 |
样品 | 含油率/% | 水分/% | 半焦/% | 气体/% |
---|---|---|---|---|
油页岩 | 16.33 | 7.80 | 68.26 | 7.61 |
烟煤 | 6.54 | 16.00 | 65.64 | 11.22 |
Table 3 Fischer assay analysis results of oil shale and bituminous coal
样品 | 含油率/% | 水分/% | 半焦/% | 气体/% |
---|---|---|---|---|
油页岩 | 16.33 | 7.80 | 68.26 | 7.61 |
烟煤 | 6.54 | 16.00 | 65.64 | 11.22 |
样品 | T0/℃ | Tmax/℃ | Tf/℃ | Rmax/(%/℃) |
---|---|---|---|---|
M | 424 | 520 | 607 | 0.1094 |
Y-20% | 461 | 547 | 600 | 0.1632 |
Y-40% | 461 | 551 | 600 | 0.1748 |
Y-60% | 468 | 576 | 601 | 0.2128 |
Y-80% | 472 | 539 | 598 | 0.2446 |
Y-100% | 476 | 552 | 593 | 0.2632 |
Table 4 Pyrolysis parameters of samples with different blending ratios
样品 | T0/℃ | Tmax/℃ | Tf/℃ | Rmax/(%/℃) |
---|---|---|---|---|
M | 424 | 520 | 607 | 0.1094 |
Y-20% | 461 | 547 | 600 | 0.1632 |
Y-40% | 461 | 551 | 600 | 0.1748 |
Y-60% | 468 | 576 | 601 | 0.2128 |
Y-80% | 472 | 539 | 598 | 0.2446 |
Y-100% | 476 | 552 | 593 | 0.2632 |
样品 | C/% | O/% | Na/% | Al/% | Si/% | Ca/% |
---|---|---|---|---|---|---|
M | 85.50 | 10.30 | 1.79 | 0.63 | 0.62 | 1.16 |
Y-20% | 16.65 | 38.35 | 1.88 | 2.02 | 12.52 | 28.58 |
Y-40% | 48.76 | 20.73 | 1.08 | 2.29 | 19.12 | 8.02 |
Y-60% | 31.16 | 30.54 | 1.00 | 2.96 | 27.80 | 6.54 |
Y-80% | 48.57 | 28.73 | 0.63 | 1.74 | 14.83 | 5.50 |
Y-100% | 19.41 | 39.86 | 0.74 | 1.90 | 19.02 | 19.07 |
Table 5 Element composition in the semi-coke local surface of samples with different blending ratios
样品 | C/% | O/% | Na/% | Al/% | Si/% | Ca/% |
---|---|---|---|---|---|---|
M | 85.50 | 10.30 | 1.79 | 0.63 | 0.62 | 1.16 |
Y-20% | 16.65 | 38.35 | 1.88 | 2.02 | 12.52 | 28.58 |
Y-40% | 48.76 | 20.73 | 1.08 | 2.29 | 19.12 | 8.02 |
Y-60% | 31.16 | 30.54 | 1.00 | 2.96 | 27.80 | 6.54 |
Y-80% | 48.57 | 28.73 | 0.63 | 1.74 | 14.83 | 5.50 |
Y-100% | 19.41 | 39.86 | 0.74 | 1.90 | 19.02 | 19.07 |
样品 | 组分/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2H6 | C2H4 | C3H8 | C3H6 | C4H10 | C4H8 | C5H12 | C5H10 | C n H2n+2(n≤5) | C n H2n (n≤5) | C n H2n+2/C n H2n (n≤5) | |
M | 9.06 | 3.20 | 1.25 | 1.26 | 1.10 | 0.43 | 0.61 | 0.22 | 0.10 | 14.17 | 3.06 | 4.63 |
Y-20% | 10.05 | 3.48 | 1.52 | 1.31 | 1.26 | 0.41 | 0.48 | 0.15 | 0.25 | 15.40 | 3.51 | 4.39 |
Y-40% | 11.06 | 4.31 | 2.08 | 1.64 | 1.83 | 0.72 | 1.19 | 0.23 | 0.61 | 17.96 | 5.71 | 3.15 |
Y-60% | 11.28 | 5.25 | 2.68 | 2.06 | 2.34 | 0.78 | 1.51 | 0.36 | 0.78 | 19.73 | 7.31 | 2.70 |
Y-80% | 13.19 | 6.08 | 3.49 | 2.29 | 2.88 | 0.80 | 1.43 | 0.31 | 0.73 | 22.67 | 8.53 | 2.66 |
Y-100% | 13.51 | 7.39 | 3.90 | 2.88 | 3.46 | 1.03 | 1.80 | 0.37 | 0.92 | 25.18 | 10.08 | 2.50 |
Table 6 Changes in organic components in gaseous products from the co-pyrolysis of samples with different blending ratios
样品 | 组分/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2H6 | C2H4 | C3H8 | C3H6 | C4H10 | C4H8 | C5H12 | C5H10 | C n H2n+2(n≤5) | C n H2n (n≤5) | C n H2n+2/C n H2n (n≤5) | |
M | 9.06 | 3.20 | 1.25 | 1.26 | 1.10 | 0.43 | 0.61 | 0.22 | 0.10 | 14.17 | 3.06 | 4.63 |
Y-20% | 10.05 | 3.48 | 1.52 | 1.31 | 1.26 | 0.41 | 0.48 | 0.15 | 0.25 | 15.40 | 3.51 | 4.39 |
Y-40% | 11.06 | 4.31 | 2.08 | 1.64 | 1.83 | 0.72 | 1.19 | 0.23 | 0.61 | 17.96 | 5.71 | 3.15 |
Y-60% | 11.28 | 5.25 | 2.68 | 2.06 | 2.34 | 0.78 | 1.51 | 0.36 | 0.78 | 19.73 | 7.31 | 2.70 |
Y-80% | 13.19 | 6.08 | 3.49 | 2.29 | 2.88 | 0.80 | 1.43 | 0.31 | 0.73 | 22.67 | 8.53 | 2.66 |
Y-100% | 13.51 | 7.39 | 3.90 | 2.88 | 3.46 | 1.03 | 1.80 | 0.37 | 0.92 | 25.18 | 10.08 | 2.50 |
1 | 张玉卓. 中国煤炭液化技术发展前景[J]. 煤炭科学技术, 2006, 34(1): 19-22. |
Zhang Y Z. Development outlook of China coal liquefaction technology[J]. Coal Science and Technology, 2006, 34(1): 19-22. | |
2 | 李小炯. 我国煤炭资源清洁高效利用现状及对策建议[J]. 煤炭经济研究, 2019, 39(1): 71-75. |
Li X J. Status and countermeasures of clean and efficient utilization of coal resources in China[J]. Coal Economic Research, 2019, 39(1): 71-75. | |
3 | 钱家麟, 王剑秋, 李术元. 世界油页岩资源利用和发展趋势[J]. 吉林大学学报(地球科学版), 2006, 36(6): 877-887. |
Qian J L, Wang J Q, Li S Y. World oil shale utilization and its future[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(6): 877-887. | |
4 | 刘招君, 董清水, 叶松青, 等. 中国油页岩资源现状[J]. 吉林大学学报(地球科学版), 2006, 36(6): 869-876. |
Liu Z J, Dong Q S, Ye S Q, et al. The situation of oil shale resources in China[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(6): 869-876. | |
5 | 刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报, 2021, 46(1): 1-15. |
Liu F, Cao W J, Zhang J M, et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society, 2021, 46(1): 1-15. | |
6 | 陆浩, 王莹莹, 潘颢丹, 等. 油页岩热解技术研究进展[J]. 应用化工, 2018, 47(9): 2031-2036. |
Lu H, Wang Y Y, Pan H D, et al. Research progress of oil shale pyrolysis technology[J]. Applied Chemical Industry, 2018, 47(9): 2031-2036. | |
7 | Cui S, Yang T H, Zhai Y M, et al. Investigation on the characteristics and interaction of co-pyrolysis of oil shale and peanut shell[J]. Fuel, 2023, 340: 127502. |
8 | Chen B, Han X X, Tong J H, et al. Studies of fast co-pyrolysis of oil shale and wood in a bubbling fluidized bed[J]. Energy Conversion and Management, 2020, 205: 112356. |
9 | Zhai Y M, Yang T H, Zhang Y, et al. Co-pyrolysis characteristics of raw/torrefied corn stalk and oil shale[J]. Journal of Analytical and Applied Pyrolysis, 2023, 171: 105967. |
10 | Yang Q C, Zhang X, Xu S T, et al. Low-temperature co-current oxidizing pyrolysis of oil shale: study on the physicochemical properties, reactivity and exothermic characters of semi-coke as heat generation donor[J]. Journal of Petroleum Science and Engineering, 2022, 216: 110726. |
11 | Wang B, Liu N, Wang S S, et al. Study on co-pyrolysis of coal and biomass and process simulation optimization[J]. Sustainability, 2023, 15(21): 15412. |
12 | Yin N, Song Y H, Wu L, et al. Analysis of tar and pyrolysis gas from low-rank coal pyrolysis assisted by apple branch[J]. 2023, 15(4): 043102. |
13 | 张旭, 王利斌, 裴贤丰, 等. 煤热解提高焦油产率及品质关键技术与研究进展[J]. 煤炭科学技术, 2019, 47(3): 227-233. |
Zhang X, Wang L B, Pei X F, et al. Research progress and key technology of improving coal tar yield and quality by coal pyrolysis[J]. Coal Science and Technology, 2019, 47(3): 227-233. | |
14 | Wu L, Liu J, Xu P, et al. Biomass hydrogen donor assisted microwave pyrolysis of low-rank pulverized coal: optimization, product upgrade and synergistic mechanism[J]. Waste Management, 2022, 143: 177-185. |
15 | 石勇, 赖登国, 陈兆辉, 等. 神木烟煤与桦甸油页岩的共热解特性[J]. 过程工程学报, 2016, 16(4): 634-638. |
Shi Y, Lai D G, Chen Z H, et al. Co-pyrolysis characteristics of Shenmu bituminous coal and Huadian oil shale[J]. The Chinese Journal of Process Engineering, 2016, 16(4): 634-638. | |
16 | Lu Y, Wang Y, Zhang J, et al. Investigation on the characteristics of pyrolysates during co-pyrolysis of Zhundong coal and Changji oil shale and its kinetics[J]. Energy, 2020, 200: 117529. |
17 | He D, Guan J, Hu H, et al. Pyrolysis and co-pyrolysis of Chinese Longkou oil shale and Mongolian huolinhe lignite[J]. Oil Shale, 2015, 32(2): 151. |
18 | Miao Z Y, Wu G G, Li P, et al. Investigation into co-pyrolysis characteristics of oil shale and coal[J]. International Journal of Mining Science and Technology, 2012, 22(2): 245-249. |
19 | Dwivedi K K, Shrivastav P, Karmakar M K, et al. A comparative study on pyrolysis characteristics of bituminous coal and low-rank coal using thermogravimetric analysis (TGA)[J]. International Journal of Coal Preparation and Utilization, 2022, 42(1): 1-11. |
20 | Hua Z J, Wang Q, Jia C X, et al. Pyrolysis kinetics of a Wangqing oil shale using thermogravimetric analysis[J]. Energy Science & Engineering, 2019, 7(3): 912-920. |
21 | Li Y Y, Li J, Zhou S X, et al. A review on thermogravimetric analysis-based analyses of the pyrolysis kinetics of oil shale and coal[J]. Energy Science & Engineering, 2024, 12(1): 329-355. |
22 | Sabat G, Gouda N, Panda A K. Effect of coal grade and heating rate on the thermal degradation behavior, kinetics, and thermodynamics of pyrolysis of low-rank coal[J]. International Journal of Coal Preparation and Utilization, 2023, 43(6): 1057-1075. |
23 | Chen B, Han X X, Mu M, et al. Studies of the co-pyrolysis of oil shale and wheat straw[J]. Energy & Fuels, 2017, 31(7): 6941-6950. |
24 | Mu M, Han X X, Wang S, et al. Interactions of oil shale and hydrogen-rich wastes during co-pyrolysis: co-pyrolysis of oil shale and waste tire[J]. Energy & Fuels, 2023, 37(6): 4222-4232. |
25 | 王擎, 关京, 徐芳. 油页岩热解特性及其甲烷释放规律研究[J]. 化工学报, 2018, 69(10): 4362-4370. |
Wang Q, Guan J, Xu F. Pyrolysis characteristics of oil shale and analysis of methane evolution mechanism[J]. CIESC Journal, 2018, 69(10): 4362-4370. | |
26 | Song Y H, Lei S M, Li J C, et al. In situ FT-IR analysis of coke formation mechanism during co-pyrolysis of low-rank coal and direct coal liquefaction residue[J]. Renewable Energy, 2021, 179: 2048-2062. |
27 | Wang W, Lemaire R, Bensakhria A, et al. Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass[J]. Journal of Analytical and Applied Pyrolysis, 2022, 163: 105479. |
28 | Liu X C, Song H, Han K S, et al. Insight into low-temperature co-pyrolysis of Qinglongshan lean coal with organic matter in Huadian oil shale[J]. Energy, 2023, 285: 128678. |
29 | Senneca O, Cerciello F, Russo C, et al. Thermal treatment of lignin, cellulose and hemicellulose in nitrogen and carbon dioxide[J]. Fuel, 2020, 271: 117656. |
30 | Zhai Y M, Zhu Y M, Cui S, et al. Study on the co-pyrolysis of oil shale and corn stalk: pyrolysis characteristics, kinetic and gaseous product analysis[J]. Journal of Analytical and Applied Pyrolysis, 2022, 163: 105456. |
31 | Chen Y Q, Liu B, Yang H P, et al. Evolution of functional groups and pore structure during cotton and corn stalks torrefaction and its correlation with hydrophobicity[J]. Fuel, 2014, 137: 41-49. |
32 | Safar M, Lin B J, Chen W H, et al. Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction[J]. Applied Energy, 2019, 235: 346-355. |
33 | Scaccia S. TG–FTIR and kinetics of devolatilization of Sulcis coal[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 95-102. |
34 | Jiang Y, Zong P J, Tian B, et al. Pyrolysis behaviors and product distribution of Shenmu coal at high heating rate: a study using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2019, 179: 72-80. |
35 | Chang Z B, Chu M, Zhang C, et al. Influence of inherent mineral matrix on the product yield and characterization from Huadian oil shale pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 269-276. |
36 | Iliopoulou E F, Stefanidis S, Kalogiannis K, et al. Pilot-scale validation of Co-ZSM-5 catalyst performance in the catalytic upgrading of biomass pyrolysis vapours[J]. Green Chemistry, 2014, 16(2): 662-674. |
37 | Lin B C, Huang Q X, Chi Y. Co-pyrolysis of oily sludge and rice husk for improving pyrolysis oil quality[J]. Fuel Processing Technology, 2018, 177: 275-282. |
38 | Xia Z B, Yang H, Sun J F, et al. Co-pyrolysis of waste polyvinyl chloride and oil-based drilling cuttings: pyrolysis process and product characteristics analysis[J]. Journal of Cleaner Production, 2021, 318: 128521. |
39 | Zhang Y M, Zhao M X, Linghu R X, et al. Comparative kinetics of coal and oil shale pyrolysis in a micro fluidized bed reaction analyzer[J]. Carbon Resources Conversion, 2019, 2(3): 217-224. |
40 | Ma C, Zhao Y Z, Lang T T, et al. Pyrolysis characteristics of low-rank coal in a low-nitrogen pyrolysis atmosphere and properties of the prepared chars[J]. Energy, 2023, 277: 127524. |
41 | Yang Z Q, Wu Y Q, Zhang Z S, et al. Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 384-398. |
42 | Kumari A, Kumar S. Pyrolytic degradation of polyethylene in autoclave under high pressure to obtain fuel[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 298-302. |
[1] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[2] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[3] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[4] | Hang GUO, Wenli HAN, Xiaoling DONG, Wencui LI. Adjusting carbonization process to optimize sodium storage performance of coal-based hard carbon anode [J]. CIESC Journal, 2022, 73(4): 1794-1806. |
[5] | Meng MA, Yonghui BAI, Juntao WEI, Lunjing YAN, Peng LYU, Jiaofei WANG, Xudong SONG, Weiguang SU, Guangsuo YU. Research and progress of volatile-char interaction during biomass and coal (co-)pyrolysis/gasification process [J]. CIESC Journal, 2022, 73(11): 5186-5200. |
[6] | Runtao WANG, Zejun LUO, Chu WANG, Xifeng ZHU. Synergistic effect during catalytic co-pyrolysis of bio-oil distillation residue and waste plastic [J]. CIESC Journal, 2022, 73(11): 5088-5097. |
[7] | Xu ZHAO, Changsheng BU, Xinye WANG, Xin ZHANG, Xiaolei CHENG, Naiji WANG, Guilin PIAO. Kinetics investigation on iron-based oxygen carrier aided oxy-fuel combustion of anthracite char [J]. CIESC Journal, 2022, 73(1): 384-392. |
[8] | ZHU Xinyu, ZHANG Guangyi, ZHANG Jianwei, WEN Hongyan, LI Yunjia, ZHANG Jianling, XU Guangwen. Performances and kinetics analyses of co-combustion of alcohol extracted herb residue and wasted activated coke [J]. CIESC Journal, 2021, 72(2): 1116-1124. |
[9] | Yifan ZHOU, Congxue YAO, Jingwen WANG, Wenwen GUO, Lei SONG, Xiaowei MU, Yuan HU. Study on thermal decomposition characteristics and kinetics of soybean [J]. CIESC Journal, 2020, 71(S2): 187-194. |
[10] | Jian LI, Ge PU, Jiashan CHEN, Qiwen LIU. High-temperature volatility characteristics and pyrolysis mechanism of common sodium salts [J]. CIESC Journal, 2020, 71(8): 3452-3459. |
[11] | GAO He,JIANG Xingyu,LIU Xuejing,YUE Junrong,ZENG Xi,HAN Zhennan,XU Guangwen. Characteristics and mechanism of catalytic effect of inner minerals on combustion of oil shale coke [J]. CIESC Journal, 2020, 71(12): 5568-5577. |
[12] | Yiqun HUANG, Man ZHANG, Miao MIAO, Boyu DENG, Jin CAI, Yuxin WU, Junfu LYU, Yan JIN, Hairui YANG. Combustion kinetics study of oil shale semi-coke [J]. CIESC Journal, 2019, 70(8): 3033-3039. |
[13] | Jianhua SHEN, Qi SONG, Bing YAO, Zhengliang HUANG, Jingdai WANG, Yongrong YANG. Catalytic effect of cobalt ion on oxidative pyrolysis of cation exchange resin [J]. CIESC Journal, 2019, 70(7): 2548-2555. |
[14] | ZHANG Jinping, WANG Chang'an, JIA Xiaowei, WANG Pengqian, CHE Defu. Co-combustion characteristics and kinetic analysis of semi-coke and bituminous coal [J]. CIESC Journal, 2018, 69(8): 3611-3618. |
[15] | LU Mengke, KUANG Wuqi, QIAN Gang, DUAN Xuezhi, ZHOU Xinggui, CHEN De. Pyrolysis characteristics and kinetics of bitumen from Green River oil shale [J]. CIESC Journal, 2018, 69(11): 4746-4753. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 203
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 86
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||