CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5568-5577.DOI: 10.11949/0438-1157.20200655
• Catalysis, kinetics and reactors • Previous Articles Next Articles
GAO He1(),JIANG Xingyu1,LIU Xuejing1,YUE Junrong2,ZENG Xi2,HAN Zhennan1(),XU Guangwen1,2()
Received:
2020-05-27
Revised:
2020-07-16
Online:
2020-12-05
Published:
2020-12-05
Contact:
HAN Zhennan,XU Guangwen
高鹤1(),姜星宇1,刘雪景1,岳君容2,曾玺2,韩振南1(),许光文1,2()
通讯作者:
韩振南,许光文
作者简介:
高鹤(1994—),男,硕士研究生,基金资助:
CLC Number:
GAO He,JIANG Xingyu,LIU Xuejing,YUE Junrong,ZENG Xi,HAN Zhennan,XU Guangwen. Characteristics and mechanism of catalytic effect of inner minerals on combustion of oil shale coke[J]. CIESC Journal, 2020, 71(12): 5568-5577.
高鹤,姜星宇,刘雪景,岳君容,曾玺,韩振南,许光文. 油页岩矿物质催化半焦燃烧特性及机理[J]. 化工学报, 2020, 71(12): 5568-5577.
Add to citation manager EndNote|Ris|BibTeX
Sample | Proximate analysis①/ % (mass) | Ultimate analysis②/%(mass) | |||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | S | H/C | |
oil shale | 6 | 80.37 | 13.16 | 0.47 | 9.38 | 1.45 | 0.97 | 0.43 | 0.155 |
char | 1.46 | 93.39 | 4.62 | 0.41 | 4.38 | 0.23 | 0.46 | 0.53 | 0.053 |
Table 1 Results of proximate and ultimate analysis of oil shale and char
Sample | Proximate analysis①/ % (mass) | Ultimate analysis②/%(mass) | |||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | S | H/C | |
oil shale | 6 | 80.37 | 13.16 | 0.47 | 9.38 | 1.45 | 0.97 | 0.43 | 0.155 |
char | 1.46 | 93.39 | 4.62 | 0.41 | 4.38 | 0.23 | 0.46 | 0.53 | 0.053 |
Sample | Compound content/%(mass) | ||||||
---|---|---|---|---|---|---|---|
CaO | Fe2O3 | Na2O | Al2O3 | MgO | SiO2 | Others | |
oil shale ash | 0.971 | 8.617 | 0.57 | 22.484 | 1.433 | 61.326 | 4.599 |
CaO/SiO2 | 15.393 | 0.268 | 0.03 | 0.08 | 2.49 | 80.744 | 0.995 |
Fe2O3/SiO2 | 0.642 | 14.58 | 0.02 | 0.649 | 1.095 | 81.823 | 1.191 |
Table 2 XRF analysis of bed material
Sample | Compound content/%(mass) | ||||||
---|---|---|---|---|---|---|---|
CaO | Fe2O3 | Na2O | Al2O3 | MgO | SiO2 | Others | |
oil shale ash | 0.971 | 8.617 | 0.57 | 22.484 | 1.433 | 61.326 | 4.599 |
CaO/SiO2 | 15.393 | 0.268 | 0.03 | 0.08 | 2.49 | 80.744 | 0.995 |
Fe2O3/SiO2 | 0.642 | 14.58 | 0.02 | 0.649 | 1.095 | 81.823 | 1.191 |
Experiment | Sample | Bed material | Research object |
---|---|---|---|
De-Char/SiO2 | De-Char | SiO2 | control group |
Char/SiO2 | Char | SiO2 | catalysis of minerals inside char |
De-Char/Ash | De-Char | oil shale ash | catalysis of bed material outside char |
Char/Ash | Char | oil shale ash | synergistic catalysis |
Char/Fe2O3 | Char | Fe2O3/SiO2 | catalysis of Fe2O3 |
Char/CaO | Char | CaO/SiO2 | catalysis of CaO |
Table 3 Experimental design of char combustion
Experiment | Sample | Bed material | Research object |
---|---|---|---|
De-Char/SiO2 | De-Char | SiO2 | control group |
Char/SiO2 | Char | SiO2 | catalysis of minerals inside char |
De-Char/Ash | De-Char | oil shale ash | catalysis of bed material outside char |
Char/Ash | Char | oil shale ash | synergistic catalysis |
Char/Fe2O3 | Char | Fe2O3/SiO2 | catalysis of Fe2O3 |
Char/CaO | Char | CaO/SiO2 | catalysis of CaO |
1 | BP p.l.c.. Statistical Review of World Energy[M]. 68th ed. London: BP p.l.c., 2019: 2-6. |
2 | Geology and Resources of Some World Oil Shale Deposits: Scientific Investigations Report 2005[R]. US: Department of the Interior, 2006. |
3 | 钱家麟, 王剑秋, 李术元.世界油页岩综述[J].中国能源, 2006, 8: 16-19. |
Qian J L, Wang J Q, Li S Y. Review of world oil shale[J]. Energy of China, 2006, 8: 16-19. | |
4 | Li Q, Han X, Liu Q, et al. Thermal decomposition of Huadian oil shale(1): Critical organic intennediates[J]. Fuel, 2014, 121(2): 109-116. |
5 | Kahru A, Põllumaa L. Environmental hazard of the waste streams of Estonian oil shale industry: an ecotoxicological review[J]. Oil Shale, 2006, 23: 53-93. |
6 | Han X X, Jiang X M, Cui Z G. Study of the combustion mechanism of oil shale semicoke in a thermogravimetric analyzer[J]. Therm. Anal. Calorim. 2008, 92: 595-600. |
7 | Lai D G, Zhang G Y, Xu G W. Characterization of oil shale pyrolysis by solid heat carrier in moving bed with internals[J]. Fuel Processing Technology, 2017, 158: 191-198. |
8 | Lai D G, Shi Y, Geng S L, et al. Secondary reactions in oil shale pyrolysis by solid heat carrier in a moving bed with internals[J]. Fuel, 2016, 173: 138-145. |
9 | Lai D G, Chen Z H, Shi Y, et al. Pyrolysis of oil shale by solid heat carrier in an innovative moving bed with internals[J]. Fuel, 2015, 159: 943-951. |
10 | Zhou H R, Zeng S, Yang S Y, et al. Modeling and analysis of oil shale refinery process with the indirectly heated moving bed[J]. Carbon Resources Conversion, 2018, 1(3): 260-265. |
11 | AItouche A, Bouamama B O. Fault tolerant control with respect to actuator failures application to steam generator process [J]. Computer Aided Chemical Engineering, 2018, 44: 1471-1476. |
12 | Weiss H J. Lurgi ruhrgas process in the retorting of oil shale[J]. Energy, 1983, 8: 17-18. |
13 | He J L, Qing W. Development and application of estonia galoter technology[J]. Journal of Northeast Dianli University, 2016, 36(2): 76-80. |
14 | Yefimov V, Alberta T. Process (ATP) selected for retorting Australian oil shale[J]. Oil Shale, 1998, 15(1): 91-92. |
15 | Williams P T, Chishti H M. Two stage pyrolysis of oil shale using a zeolite catalyst [J]. Journal of Analytical and Applied Pyrolysis, 2000, 55 (2): 217-234. |
16 | Lai D, Zhang G, Xu G. Characterization of oil shale pyrolysis by solid heat carrier in moving bed with internals[J]. Fuel Processing Technology, 2017, 158: 191-198. |
17 | Cavalieri R P, Thomson W J. Effects of oil shale mineral composition on char combustion reactions[J]. Fuel, 1990, 69: 334-339. |
18 | Cavalieri R P, Thomson W J. Effect of mineral species on oil shale char combustion[J]. Geochemistry and Chemistry of Oil Shales, 1983, 230: 543-556. |
19 | Fan C, Yan J W, Huang Y R, et al. XRD and TG-FTIR study of the effect of mineral matrix on the pyrolysis and combustion of organic matter in shale char[J]. Fuel, 2015, 139: 502-510. |
20 | Yan J, Jiang X, Han X, et al. A TG–FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen[J]. Fuel, 2013, 104: 307-317. |
21 | Zeng X, Wang F, Wang Y, et al. Characterization of char gasification in a micro fluidized bed reaction analyzer[J]. Energy & Fuels, 2014, 28(3): 1838-1845. |
22 | Zhang Y, Zhao M, Linghu R, et al. Comparative kinetics of coal and oil shale pyrolysis in a micro fluidized bed reaction analyzer[J]. Carbon Resources Conversion, 2019, 2(3): 217-224. |
23 | Zeng X, Wang F, Adamu M H, et al. High-temperature drying behavior and kinetics of lignite tested by the micro fluidization analytical method[J]. Fuel, 2019, 253: 180-188. |
24 | Wang F, Zeng X, Shao R, et al. Isothermal gasification of in situ/ex situ coal char with CO2 in a micro fluidized bed reaction analyzer[J]. Energy & Fuels, 2015, 29(8): 4795-4802. |
25 | Wang F, Zeng X, Wang Y, et al. Non-isothermal coal char gasification with CO2 in a micro fluidized bed reaction analyzer and a thermogravimetric analyzer[J]. Fuel, 2016, 164: 403-409. |
26 | Ballice L, Yüksel M, Saglam M, et al. Application of infrared spectroscopy to the classification of kerogen types and the thermogravimetrically derived pyrolysis kinetics of oil shales[J]. Fuel, 1995, 74(11): 1618-1623. |
27 | Ballice L, Larsen W J. Changes in the cross-link density of Goynuk oil shale (Turkey) on pyrolysis[J]. Fuel, 2003, 82(11): 1305-1310. |
28 | Wang F, Zeng X, Wang Y, et al. Characterization of coal char gasification with steam in a micro-fluidized bed reaction analyzer[J]. Fuel Processing Technology, 2016, 141: 2-8. |
29 | Yu J, Yao C B, Zeng X, et al. Biomass pyrolysis in a micro-fluidized bed reactor: characterization and kinetics[J]. Chemical Engineering Journal, 2011, 168: 839-847. |
30 | Zeng X, Wang F, Wang Y G, et al. Characterization of char gasification in a micro fluidized bed reaction analyzer[J]. Energy & Fuels, 2014, 28: 1838-1845. |
31 | Lai D G, Chen Z, Lin L, et al. Secondary cracking and upgrading of shale oil from pyrolyzing oil shale over shale ash[J]. Energy & Fuels, 2015, 29(4): 2219-2226. |
32 | Wang Y L, Zhu S H, Gao M Q, et al. A study of char gasification in H2O and CO2 mixtures: role of inherent minerals in the coal[J]. Fuel Processing Technology, 2016, 141: 9-15. |
33 | Liu H P, Liang W X, Wu M H, et al. Co-combustion of oil shale retorting solid waste with cornstalk particles in a circulating fluidized bed[J]. Energy & Fuels, 2015, 29(10): 6832-6838. |
34 | 卢茂奇. 油页岩半焦流化燃烧反应动力学研究[D].吉林: 东北电力大学, 2018. |
Lu M Q. Study on the kinetics of fluidized combustion reaction of oil shale semicoke[D]. Jilin: Northeast Electric Power University, 2018. | |
35 | Fujimoto F D, Braun R L, Taylor R W, et al. Intrinsic kinetics of oxidation of residual organic carbon in rapidly pyrolyzed oil shale[J]. Energy and Fuel, 1987, 1: 320-323. |
36 | Soni Y, Thomson W J. Oxidation kinetics of oil shale char[J]. Industrial & Engineering Chemistry Process Design and Development, 1979, 18(4): 661-667. |
37 | Han X X, Jiang X M, Cui Z G. Study of the combustion mechanism of oil shale semicoke in a thermogravimetric analyzer[J]. Journal of Thermal Analysis and Calorimetry, 2008, 92(2): 595-600. |
38 | 余剑, 朱剑虹, 岳君容, 等. 微型流化床反应动力学分析仪的研制与应用[J]. 化工学报, 2009, 60 (10): 2669-2674. |
Yu J, Zhu J H, Yue J R, et al. Development and application of micro kinetic analyzer for fluidized bed gas-solid reactions[J]. CIESC Journal, 2009, 60(10): 2669-2674. | |
39 | Geng S L, Han Z N, Yue J R, et al. Conditioning micro fluidized bed for maximal approach of gas plug flow [J]. Chemical Engineering Journal, 2018, 351: 110-118. |
40 | 郝丽芳, 李松庚, 崔丽杰, 等.煤催化热解技术研究进展[J].煤炭科学技术, 2012, 40(10): 108-112. |
Hao L F, Li S G, Cui L J, et al. Research progress of coal catalytic pyrolysis technology[J]. Coal Science and Technology, 2012, 40(10): 108-112. | |
41 | Gong X, Guo Z, Wang Z. Variation of char structure during anthracite pyrolysis catalyzed by Fe2O3 and its influence on char combustion reactivity [J]. Energy Fuels, 2009, 23(9): 4547-4552. |
42 | 公旭中, 郭占成, 王志. Fe2O3对高变质程度脱灰煤热解反应性与半焦结构的影响[J].化工学报, 2009, 60(9): 2321-2326. |
Gong X Z, Guo Z C, Wang Z. Effects of Fe2O3 on pyrolysis reactivity of demineralized higher rank coal and its char structure[J]. CIESC Journal, 2009, 60(9): 2321-2326. | |
43 | McKee D W. Mechanism of the alkali metal catalyzed gasification of carbon [J]. Fuel, 1983, 62(2): 170-175. |
44 | Gong X, Wang G Z. Variation on anthracite combustion efficiency with CeO2 and Fe2O3 addition by differential thermal analysis (DTA)[J]. Energy, 2010, 35: 506-511. |
45 | Han X X, Jiang X M, Cui Z G. Change of pore structure of oil shale particles during combustion(2): Pore structure of oil-shale ash[J]. Energy and Fuels, 2008, 22: 972-975. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[3] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[4] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[5] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[6] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[7] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[8] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[9] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[10] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[11] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[12] | Xun JIAO, Cheng TONG, Cunpu LI, Zidong WEI. Kinetic regulation strategies in lithium-sulfur batteries [J]. CIESC Journal, 2023, 74(1): 170-191. |
[13] | Yang HU, Yan SUN. Self-propulsion of enzyme and enzyme-induced micro-/nanomotor [J]. CIESC Journal, 2023, 74(1): 116-132. |
[14] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[15] | Yu CHEN, Xiaoyan ZHENG, Hui ZHAO, Erqiang WANG, Jie LI, Chunshan LI. Heterogeneous aldol condensation catalyzed with Pickering emulsion [J]. CIESC Journal, 2023, 74(1): 449-458. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||