CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1731-1741.DOI: 10.11949/0438-1157.20241053
• Energy and environmental engineering • Previous Articles Next Articles
Zhaoxue ZHANG1,2(), Zhengyu LI1,2, Wenhui CUI1,2, Qian WANG3, Zhiping WANG3, Linghui GONG1,2(
)
Received:
2024-09-23
Revised:
2024-12-30
Online:
2025-05-12
Published:
2025-04-25
Contact:
Linghui GONG
张赵雪1,2(), 李正宇1,2, 崔文慧1,2, 王倩3, 王志平3, 龚领会1,2(
)
通讯作者:
龚领会
作者简介:
张赵雪(2000—),女,硕士研究生,zhangzhaoxue22@mails.ucas.ac.cn
基金资助:
CLC Number:
Zhaoxue ZHANG, Zhengyu LI, Wenhui CUI, Qian WANG, Zhiping WANG, Linghui GONG. Research on cascade recovery and utilization of cold energy in liquid hydrogen energy storage based on liquid neon - liquid nitrogen[J]. CIESC Journal, 2025, 76(4): 1731-1741.
张赵雪, 李正宇, 崔文慧, 王倩, 王志平, 龚领会. 基于液氖液氮梯级蓄冷的液氢储能中冷能回收利用研究[J]. 化工学报, 2025, 76(4): 1731-1741.
蓄冷流程 | 蓄冷工质输出流量/(kg/h) | 氢气出口温度/K | 㶲效率/% | |||
---|---|---|---|---|---|---|
LNe | HLNe | LN2 | CO2 | |||
基本蓄冷流程 | 5.8 | 2.1 | 1 | 222.4 | 79.97 | |
增加CO2@2MPa | 5.8 | 2.1 | 1 | 2.9 | 291.1 | 80.16 |
增加跨临界CO2余热利用循环的蓄冷流程(增加CO2循环@1 MPa) | 5.8 | 2.1 | 1 | 2.2 | 273.7 | 81.65 |
Table 1 Calculation results of cold energy storage flow of liquid hydrogen per unit mass flow
蓄冷流程 | 蓄冷工质输出流量/(kg/h) | 氢气出口温度/K | 㶲效率/% | |||
---|---|---|---|---|---|---|
LNe | HLNe | LN2 | CO2 | |||
基本蓄冷流程 | 5.8 | 2.1 | 1 | 222.4 | 79.97 | |
增加CO2@2MPa | 5.8 | 2.1 | 1 | 2.9 | 291.1 | 80.16 |
增加跨临界CO2余热利用循环的蓄冷流程(增加CO2循环@1 MPa) | 5.8 | 2.1 | 1 | 2.2 | 273.7 | 81.65 |
流 程 | 蓄冷工质流量/(kg/h) | 氢气出口温度/K | 㶲效率/% | 能量效率/% | |||
---|---|---|---|---|---|---|---|
HLNe | LN2 | CO2 | EG | ||||
150 K膨胀 LCO2@2 MPa | 2.9 | 3.2 | 8.6 | 296.5 | 38.18 | 83.34 | |
130 K膨胀 LCO2@2 MPa | 2.9 | 4 | 7 | 294.1 | 42.09 | 85.86 | |
298 K膨胀 LCO2@2 MPa | 2.9 | 2.6 | 11 | 6 | 292.5 | 36.01 | 68.27 |
298 K膨胀CO2循环@1 MPa(440 K高温燃料电池) | 2.9 | 2.6 | 6.4 | 20 | 298.7 | 43.36 | 68.72 |
298 K膨胀CO2循环@1 MPa (353 K燃料电池) | 2.9 | 2.6 | 7.8 | 23 | 299.4 | 43.13 | 68.77 |
130 K膨胀 CO2循环@1 MPa | 2.9 | 4 | 7 | 5 | 299.0 | 50.86 | 86.07 |
Table 2 Calculation results of cold energy storage process after pressurization
流 程 | 蓄冷工质流量/(kg/h) | 氢气出口温度/K | 㶲效率/% | 能量效率/% | |||
---|---|---|---|---|---|---|---|
HLNe | LN2 | CO2 | EG | ||||
150 K膨胀 LCO2@2 MPa | 2.9 | 3.2 | 8.6 | 296.5 | 38.18 | 83.34 | |
130 K膨胀 LCO2@2 MPa | 2.9 | 4 | 7 | 294.1 | 42.09 | 85.86 | |
298 K膨胀 LCO2@2 MPa | 2.9 | 2.6 | 11 | 6 | 292.5 | 36.01 | 68.27 |
298 K膨胀CO2循环@1 MPa(440 K高温燃料电池) | 2.9 | 2.6 | 6.4 | 20 | 298.7 | 43.36 | 68.72 |
298 K膨胀CO2循环@1 MPa (353 K燃料电池) | 2.9 | 2.6 | 7.8 | 23 | 299.4 | 43.13 | 68.77 |
130 K膨胀 CO2循环@1 MPa | 2.9 | 4 | 7 | 5 | 299.0 | 50.86 | 86.07 |
释冷流程 | 输入工质流量/(kg/h) | 预冷氢气出口 | 㶲效率/% | 蓄冷释冷总流程 | ||||
---|---|---|---|---|---|---|---|---|
LN2 | HLNe | LNe | 温度/K | 流量/(kg/h) | 能量效率/% | 㶲效率/% | ||
无增压蓄冷 | 1 | 2.1 | 5.8 | 28.91 | 0.75 | 70.97 | 72.74 | 68.77 |
增压后蓄冷 150 K膨胀 | 3.2 | 2.9 | 51.89 | 0.64 | 63.14 | 52.70 | 37.94 | |
298 K膨胀 | 2.6 | 2.9 | 50.04 | 0.58 | 65.98 | 48.16 | 35.01 |
Table 3 Output parameters of cold hydrogen in the cold energy release and precooling process
释冷流程 | 输入工质流量/(kg/h) | 预冷氢气出口 | 㶲效率/% | 蓄冷释冷总流程 | ||||
---|---|---|---|---|---|---|---|---|
LN2 | HLNe | LNe | 温度/K | 流量/(kg/h) | 能量效率/% | 㶲效率/% | ||
无增压蓄冷 | 1 | 2.1 | 5.8 | 28.91 | 0.75 | 70.97 | 72.74 | 68.77 |
增压后蓄冷 150 K膨胀 | 3.2 | 2.9 | 51.89 | 0.64 | 63.14 | 52.70 | 37.94 | |
298 K膨胀 | 2.6 | 2.9 | 50.04 | 0.58 | 65.98 | 48.16 | 35.01 |
液化及补偿流程 | 预冷氢流量/(kg/h) | 液化耗功/(kWh/kg) | 含液氮 液化耗功 | 含液氮 㶲效率/% |
---|---|---|---|---|
1.5 t氦循环 | 15.51 | 18.99 | 21.88 | |
无增压蓄冷 | + 65 | 7.87 | 9.69 | 42.87 |
增压后蓄冷 | + 28 | 11.03 | 13.60 | 30.55 |
5 t氢循环 | 10.42 | 15.61 | 25.76 | |
无增压蓄冷 | + 90 | 7.65 | 11.47 | 35.07 |
增压后蓄冷 | + 85 | 7.82 | 11.94 | 33.67 |
Table 4 Calculation results of cold energy compensation to liquefaction cycle
液化及补偿流程 | 预冷氢流量/(kg/h) | 液化耗功/(kWh/kg) | 含液氮 液化耗功 | 含液氮 㶲效率/% |
---|---|---|---|---|
1.5 t氦循环 | 15.51 | 18.99 | 21.88 | |
无增压蓄冷 | + 65 | 7.87 | 9.69 | 42.87 |
增压后蓄冷 | + 28 | 11.03 | 13.60 | 30.55 |
5 t氢循环 | 10.42 | 15.61 | 25.76 | |
无增压蓄冷 | + 90 | 7.65 | 11.47 | 35.07 |
增压后蓄冷 | + 85 | 7.82 | 11.94 | 33.67 |
液化及 补偿流程 | 分流比 | 透平做功/kW | 节流前 换热器 | 末级换热器 | |||
---|---|---|---|---|---|---|---|
一级 | 二级 | 负荷/kW | 㶲效率/% | 负荷/kW | 㶲效率/% | ||
1.5 t氦循环 | 0.7 | 11.36 | 14.22 | 42.24 | 83.20 | 3.23 | 83.30 |
无增压蓄冷 | 6.57 | 90.20 | |||||
增压后蓄冷 | 0.52 | 18.17 | 10.57 | 40.45 | 95.11 | 4.67 | 89.63 |
5 t氢循环 | 0.12 | 41.41 | 48.08 | 14.60 | 74.09 | 9.93 | 85.59 |
无增压蓄冷 | 4.11 | 93.63 | 20.42 | 83.19 | |||
增压后蓄冷 | 0.14 | 35.29 | 40.98 | 9.44 | 90.24 | 20.11 | 85.05 |
Table 5 Comparison of operating parameters of cold energy compensation to liquefaction cycle
液化及 补偿流程 | 分流比 | 透平做功/kW | 节流前 换热器 | 末级换热器 | |||
---|---|---|---|---|---|---|---|
一级 | 二级 | 负荷/kW | 㶲效率/% | 负荷/kW | 㶲效率/% | ||
1.5 t氦循环 | 0.7 | 11.36 | 14.22 | 42.24 | 83.20 | 3.23 | 83.30 |
无增压蓄冷 | 6.57 | 90.20 | |||||
增压后蓄冷 | 0.52 | 18.17 | 10.57 | 40.45 | 95.11 | 4.67 | 89.63 |
5 t氢循环 | 0.12 | 41.41 | 48.08 | 14.60 | 74.09 | 9.93 | 85.59 |
无增压蓄冷 | 4.11 | 93.63 | 20.42 | 83.19 | |||
增压后蓄冷 | 0.14 | 35.29 | 40.98 | 9.44 | 90.24 | 20.11 | 85.05 |
1 | Busch T, Groß T, Linßen J, et al. The role of liquid hydrogen in integrated energy systems—a case study for Germany[J]. International Journal of Hydrogen Energy, 2023, 48(99): 39408-39424. |
2 | 张震, 解辉, 苏嘉南, 等. “碳中和”背景下的液氢发展之路探讨[J]. 天然气工业, 2022, 42(4): 187-193. |
Zhang Z, Xie H, Su J N, et al. Development of liquid hydrogen under the background of carbon neutrality[J]. Natural Gas Industry, 2022, 42(4): 187-193. | |
3 | Al Ghafri S Z, Munro S, Cardella U, et al. Hydrogen liquefaction: a review of the fundamental physics, engineering practice and future opportunities[J]. Energy & Environmental Science, 2022, 15(7): 2690-2731. |
4 | Aziz M. Liquid hydrogen: a review on liquefaction, storage, transportation, and safety[J]. Energies, 2021, 14(18): 5917. |
5 | Yilmaz F, Ozturk M, Selbas R. Development and assessment of a newly developed renewable energy-based hybrid system with liquid hydrogen storage for sustainable development[J]. International Journal of Hydrogen Energy, 2024, 56: 406-417. |
6 | Incer-Valverde J, Mörsdorf J, Morosuk T, et al. Power-to-liquid hydrogen: exergy-based evaluation of a large-scale system[J]. International Journal of Hydrogen Energy, 2023, 48(31): 11612-11627. |
7 | 陈良, 周楷淼, 赖天伟, 等. 液氢为核心的氢燃料供应链[J]. 低温与超导, 2020, 48(11): 1-7. |
Chen L, Zhou K M, Lai T W, et al. Hydrogen fuel supply chain based on liquid hydrogen[J]. Cryogenics & Superconductivity, 2020, 48(11): 1-7. | |
8 | Berstad D, Gardarsdottir S, Roussanaly S, et al. Liquid hydrogen as prospective energy carrier: a brief review and discussion of underlying assumptions applied in value chain analysis[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111772. |
9 | Kim Y, Qi M, Cho J, et al. Process design and analysis for combined hydrogen regasification process and liquid air energy storage[J]. Energy, 2023, 283: 129093. |
10 | Huo Y K, Li A R, Wang Q. A novel cascade utilization system of liquid hydrogen cold energy: energy, exergy, and economic analysis[J]. Heat Transfer Engineering, 2024, 45(20/21): 1854-1868. |
11 | Li B, Wang S S. Thermo-economic analysis and optimization of a cascade transcritical carbon dioxide cycle driven by the waste heat of gas turbine and cold energy of liquefied natural gas[J]. Applied Thermal Engineering, 2022, 214: 118861. |
12 | 张涛, 刘嘉楷, 戴天乐, 等. 二氧化碳电热储能与液态储能系统热力性能对比分析[J]. 储能科学与技术, 2024, 13(5): 1554-1563. |
Zhang T, Liu J K, Dai T L, et al. Comparative analysis of thermal performance of electrothermal energy storage and liquid energy storage based on carbon dioxide[J]. Energy Storage Science and Technology, 2024, 13(5): 1554-1563. | |
13 | Ahmadi M H, Mohammadi A, Pourfayaz F, et al. Thermodynamic analysis and optimization of a waste heat recovery system for proton exchange membrane fuel cell using transcritical carbon dioxide cycle and cold energy of liquefied natural gas[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 428-438. |
14 | Yang L Z, Villalobos U, Akhmetov B, et al. A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: state of the art and recent developments[J]. Applied Energy, 2021, 288: 116555. |
15 | Singla M K, Nijhawan P, Oberoi A S. Hydrogen fuel and fuel cell technology for cleaner future: a review[J]. Environmental Science and Pollution Research, 2021, 28(13): 15607-15626. |
16 | Nasser M, Hassan H. Assessment of standalone streetlighting energy storage systems based on hydrogen of hybrid PV/electrolyzer/fuel cell/desalination and PV/batteries[J]. Journal of Energy Storage, 2023, 63: 106985. |
17 | He T B, Lv H Y, Shao Z X, et al. Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling[J]. Applied Energy, 2020, 277: 115570. |
18 | 卢昕悦, 陈锐莹, 姜夏雪, 等. 耦合LNG冷能的液态空气储能系统和液态CO2储能系统对比分析[J]. 化工学报, 2024, 75(9): 3297-3309. |
Lu X Y, Chen R Y, Jiang X X, et al. Comparative study on liquid air energy storage system and liquid carbon dioxide energy storage system coupled with liquefied natural gas cold energy[J]. CIESC Journal, 2024, 75(9): 3297-3309. | |
19 | Dewevre F, Lacroix C, Loubar K, et al. Carbon dioxide energy storage systems: current researches and perspectives[J]. Renewable Energy, 2024, 224: 120030. |
20 | 向腾龙, 王治红, 汪贵, 等. 液化天然气冷能梯级利用的多功能集成系统研究[J]. 化工学报, 2024, 75(10): 3401-3413. |
Xiang T L, Wang Z H, Wang G, et al. Research on multifunctional integrated system for cold energy cascade utilization of liquefied natural gas[J]. CIESC Journal, 2024, 75(10): 3401-3413. | |
21 | Karayel G K, Javani N, Dincer I. Green hydrogen production potential for Turkey with solar energy[J]. International Journal of Hydrogen Energy, 2022, 47(45): 19354-19364. |
22 | Abdollahipour A, Sayyaadi H. Optimal design of a hybrid power generation system based on integrating PEM fuel cell and PEM electrolyzer as a moderator for micro-renewable energy systems[J]. Energy, 2022, 260: 124944. |
23 | Zhang T T, Uratani J, Huang Y X, et al. Hydrogen liquefaction and storage: recent progress and perspectives[J]. Renewable and Sustainable Energy Reviews, 2023, 176: 113204. |
24 | 魏瑾. 基于LNG接收站冷能的发电制氢及氢液化耦合工艺研究[D]. 北京: 中国石油大学(北京), 2023. |
Wei J. Research on coupling process of hydrogen generation and hydrogen liquefaction based on cold energy of LNG receiving terminal[D]. Beijing: China University of Petroleum, 2023. | |
25 | 熊联友, 杨坤, 孔巍, 等. 5 t/d氢液化装置的研制[J]. 真空与低温, 2024, 30(4): 349-354. |
Xiong L Y, Yang K, Kong W, et al. Development of a 5 t/d hydrogen liquefaction unit[J]. Vacuum and Cryogenics, 2024, 30(4): 349-354. | |
26 | 秦海玲, 李静, 周刚, 等. 5 t/d氢液化器流程设计及分析[J]. 真空与低温, 2024, 30(4): 355-360. |
Qin H L, Li J, Zhou G, et al. Process design and analysis of 5 t/d hydrogen liquefier[J]. Vacuum and Cryogenics, 2024, 30(4): 355-360. | |
27 | 苏惠坤, 李正宇, 龚领会, 等. 高效双压氦液化循环研究[J]. 华中科技大学学报(自然科学版), 2024, 52(4): 143-148. |
Su H K, Li Z Y, Gong L H, et al. Research on efficient double-pressure helium liquefaction cycle[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(4): 143-148. | |
28 | Xu Y F, Bi Y J, Ju Y L. The thermodynamic analysis on the catalytical ortho-para hydrogen conversion during the hydrogen liquefaction process[J]. International Journal of Hydrogen Energy, 2024, 54: 1329-1342. |
29 | Yang J, Li Y Z, Li C, et al. Hydrogen pressure-based comparative and applicability analysis of different innovative Claude cycles for large-scale hydrogen liquefaction[J]. Energy, 2024, 305: 132291. |
30 | 杨坤, 熊联友, 徐向辉, 等. 1.5 t/d氢液化装置的研制与运行[J]. 真空与低温, 2024, 30(4): 361-367. |
Yang K, Xiong L Y, Xu X H, et al. Development and operation of a 1.5 t/d hydrogen liquefaction plant[J]. Vacuum and Cryogenics, 2024, 30(4): 361-367. |
[1] | Xiangrui ZHAI, Wei ZHANG, Qianqian ZHANG, Jiuzhe QU, Xufei YANG, Yajun DENG, Bo YU. Active heat transfer enhancement technology for solid-liquid phase change energy storage based on external field disturbance [J]. CIESC Journal, 2025, 76(4): 1432-1446. |
[2] | Jiayuan FAN, Wenhui ZENG, Zhichao REN, Wentao ZHANG, Shuang LYU. Preparation and heat transfer enhancement of phase change slurry with multi-phase change temperature [J]. CIESC Journal, 2025, 76(4): 1863-1874. |
[3] | Wen CHAN, Wan YU, Gang WANG, Huashan SU, Fenxia HUANG, Tao HU. Thermodynamic and economic analyses and dual-objective optimization of Allam cycle with improved regenerator layout [J]. CIESC Journal, 2025, 76(4): 1680-1692. |
[4] | Pengfei ZHAO, Ruomei QI, Xinfeng GUO, Hu FANG, Lufei XU, Xiao LI, Jin LIN. Analysis of hydrogen-to-oxygen impurities in a 1000 m3/h alkaline water electrolysis system [J]. CIESC Journal, 2025, 76(4): 1765-1778. |
[5] | Junliang HUO, Zhiguo TANG, Zongjun QIU, Yuhua FENG, Xu JIANG, Leyi WANG, Yu YANG, Fanfan QIAO, Yifan HE, Jianliang YU. Experimental research on risk of freezing and plugging during CO2 pipeline venting under throttling effect [J]. CIESC Journal, 2025, 76(4): 1898-1908. |
[6] | Luochang WU, Zeyu YANG, Jianguo YAN, Xutao ZHU, Yang CHEN, Zichen WANG. Experimental study on convection heat transfer characteristics of supercritical carbon dioxide flowing in mini square channels [J]. CIESC Journal, 2025, 76(4): 1583-1594. |
[7] | Lu LIU, Kai WAN, Wenyue WANG, Tai WANG, Jiancheng TANG, Shaoheng WANG. Study on orthohydrogen and parahydrogen conversion coupled flow and heat transfer based on helium expansion refrigeration [J]. CIESC Journal, 2025, 76(4): 1513-1522. |
[8] | Yichen ZHANG, Wenbiao ZHANG, Haoyang LI, Xiaoyang NING. Flow measurement of gas-liquid two-phase CO2 using Venturi tube based on dual differential pressure model [J]. CIESC Journal, 2025, 76(4): 1493-1503. |
[9] | Zhineng TAO, Tong QIU, Baoguo WANG. Steady-state modeling on hydrogen production by anion exchange membrane water electrolysis [J]. CIESC Journal, 2025, 76(4): 1711-1721. |
[10] | Shuli LIU, Wenhao ZHOU, Shaoliang ZHANG, Yongliang SHEN. Heat release performance of direct absorption/storage solar collector [J]. CIESC Journal, 2025, 76(4): 1722-1730. |
[11] | Yiming ZHANG, Peng YANG, Xianbing JI, Jixing REN, Lei ZHANG, Zheng MIAO. Thermal performance of multi-loop flat loop heat pipes [J]. CIESC Journal, 2025, 76(3): 1018-1028. |
[12] | Ke LI, Biping XIN, Jian WEN. Sequential quadratic programming optimization of continuous variable density multi-layer insulation coupled with vapor cooled shield in liquid hydrogen storage tank [J]. CIESC Journal, 2025, 76(3): 985-994. |
[13] | Lyusheng ZHANG, Zhihong WANG, Qing LIU, Xuewen LI, Renmin TAN. Research progress in carbon dioxide capture using liquid-liquid phase change absorbents [J]. CIESC Journal, 2025, 76(3): 933-950. |
[14] | Jingrun LI, Siyu YANG, Qinghui LIU, An PAN, Jiayue WANG, Xiaogui FU, Hao YU. Analysis of multiple operating strategies for large-scale wind power coupled with thermal power for hydrogen production under various scenarios [J]. CIESC Journal, 2025, 76(3): 1191-1206. |
[15] | Xiankai ZHANG, Boyu WANG, Yali GUO, Shengqiang SHEN. Calculation and analysis of thermal performance of horizontal circular tube falling film evaporative condenser [J]. CIESC Journal, 2025, 76(3): 995-1005. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 289
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||