CIESC Journal ›› 2019, Vol. 70 ›› Issue (7): 2548-2555.DOI: 10.11949/0438-1157.20190253
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Jianhua SHEN1,2(),Qi SONG1,2,Bing YAO3,Zhengliang HUANG1,2(),Jingdai WANG1,2,Yongrong YANG1,2
Received:
2019-03-18
Revised:
2019-04-23
Online:
2019-07-05
Published:
2019-07-05
Contact:
Zhengliang HUANG
沈建华1,2(),宋琦1,2,姚兵3,黄正梁1,2(),王靖岱1,2,阳永荣1,2
通讯作者:
黄正梁
作者简介:
沈建华(1994—),男,硕士研究生,<email>21628049@zju.edu.cn</email>
基金资助:
CLC Number:
Jianhua SHEN, Qi SONG, Bing YAO, Zhengliang HUANG, Jingdai WANG, Yongrong YANG. Catalytic effect of cobalt ion on oxidative pyrolysis of cation exchange resin[J]. CIESC Journal, 2019, 70(7): 2548-2555.
沈建华, 宋琦, 姚兵, 黄正梁, 王靖岱, 阳永荣. 钴离子对阳离子交换树脂氧化裂解反应的催化作用[J]. 化工学报, 2019, 70(7): 2548-2555.
Add to citation manager EndNote|Ris|BibTeX
失重峰 | 钴含量/(g/L) | ||||||
---|---|---|---|---|---|---|---|
0 | 0.1 | 10 | 20 | 30 | 40 | ||
1 | Ti /℃ | 280 | 280 | 280 | 280 | 280 | 280 |
Tf /℃ | 396 | 393 | 390 | 395 | 395 | 393 | |
Te/℃ | 354 | 352 | 352 | 355 | 356 | 354 | |
w/% | 15.2 | 15.3 | 13.0 | 12.4 | 12.1 | 11.1 | |
2 | Ti /℃ | 396 | 393 | 390 | 395 | 395 | 393 |
Tf /℃ | 483 | 480 | 480 | 484 | 482 | 475 | |
Te/℃ | 444 | 446 | 440 | 450 | 455 | 458 | |
w/% | 16.5 | 16.8 | 18.3 | 17.3 | 16.8 | 16.2 | |
3 | Ti /℃ | 483 | 480 | ||||
Tf /℃ | 546 | 545 | |||||
Te/℃ | 515 | 510 | |||||
w/% | 6.4 | 6.1 | |||||
4 | Ti /℃ | 730 | 730 | 480 | 484 | 482 | 475 |
Tf /℃ | 830 | 830 | 830 | 800 | 820 | 660 | |
Te/℃ | 777 | 774 | 535 | 545 | 543 | 514 | |
w/% | 39.2 | 38.9 | 46.3 | 48.6 | 48.9 | 50.1 | |
wR/% | 20.0 | 20.1 | 21.8 | 21.6 | 21.3 | 20.2 | |
ρ0/(g/cm3) | 1.42 | 1.42 | 1.43 | 1.44 | 1.42 | 1.44 | |
ρR/(g/cm3) | 1.56 | 1.57 | 1.58 | 1.58 | 1.57 | 1.60 | |
α | 5.5 | 5.5 | 5.1 | 5.1 | 5.2 | 5.5 |
Table 1 Comparison of pyrolysis between pure resin and Co-containing resins with different Co contents
失重峰 | 钴含量/(g/L) | ||||||
---|---|---|---|---|---|---|---|
0 | 0.1 | 10 | 20 | 30 | 40 | ||
1 | Ti /℃ | 280 | 280 | 280 | 280 | 280 | 280 |
Tf /℃ | 396 | 393 | 390 | 395 | 395 | 393 | |
Te/℃ | 354 | 352 | 352 | 355 | 356 | 354 | |
w/% | 15.2 | 15.3 | 13.0 | 12.4 | 12.1 | 11.1 | |
2 | Ti /℃ | 396 | 393 | 390 | 395 | 395 | 393 |
Tf /℃ | 483 | 480 | 480 | 484 | 482 | 475 | |
Te/℃ | 444 | 446 | 440 | 450 | 455 | 458 | |
w/% | 16.5 | 16.8 | 18.3 | 17.3 | 16.8 | 16.2 | |
3 | Ti /℃ | 483 | 480 | ||||
Tf /℃ | 546 | 545 | |||||
Te/℃ | 515 | 510 | |||||
w/% | 6.4 | 6.1 | |||||
4 | Ti /℃ | 730 | 730 | 480 | 484 | 482 | 475 |
Tf /℃ | 830 | 830 | 830 | 800 | 820 | 660 | |
Te/℃ | 777 | 774 | 535 | 545 | 543 | 514 | |
w/% | 39.2 | 38.9 | 46.3 | 48.6 | 48.9 | 50.1 | |
wR/% | 20.0 | 20.1 | 21.8 | 21.6 | 21.3 | 20.2 | |
ρ0/(g/cm3) | 1.42 | 1.42 | 1.43 | 1.44 | 1.42 | 1.44 | |
ρR/(g/cm3) | 1.56 | 1.57 | 1.58 | 1.58 | 1.57 | 1.60 | |
α | 5.5 | 5.5 | 5.1 | 5.1 | 5.2 | 5.5 |
反应温度/℃ | 碳含量(质量分数)/% | 氢含量(质量分数)/% | 硫含量(质量分数)/% | |||
---|---|---|---|---|---|---|
纯树脂 | 含钴树脂 | 纯树脂 | 含钴树脂 | 纯树脂 | 含钴树脂 | |
反应前 | 42.8 | 41.4 | 6.3 | 4.6 | 14.0 | 13.4 |
350 | 47.2 | 44.2 | 4.4 | 4.1 | 13.3 | 11.3 |
445 | 37.8 | 39.2 | 2.3 | 2.4 | 10.0 | 8.5 |
515 | 32.9 | 11.5 | 1.7 | 0.6 | 10.8 | 6.0 |
630 | 4.9 | 0.7 | 0.4 | 0.3 | 6.6 | 3.9 |
Table 2 Elemental analysis of residues of pure resin and Co-containing resin at different temperature
反应温度/℃ | 碳含量(质量分数)/% | 氢含量(质量分数)/% | 硫含量(质量分数)/% | |||
---|---|---|---|---|---|---|
纯树脂 | 含钴树脂 | 纯树脂 | 含钴树脂 | 纯树脂 | 含钴树脂 | |
反应前 | 42.8 | 41.4 | 6.3 | 4.6 | 14.0 | 13.4 |
350 | 47.2 | 44.2 | 4.4 | 4.1 | 13.3 | 11.3 |
445 | 37.8 | 39.2 | 2.3 | 2.4 | 10.0 | 8.5 |
515 | 32.9 | 11.5 | 1.7 | 0.6 | 10.8 | 6.0 |
630 | 4.9 | 0.7 | 0.4 | 0.3 | 6.6 | 3.9 |
1 | 唐熹霖. 弱碱性阴离子交换树脂去除低放废水中痕量核素研究[D]. 北京: 北京林业大学, 2007. |
TangX L. Studies on removal of trace-amount radionuclide from low-level liquid wastes by weakly basic exchange resin[D]. Beijing: Beijing Forestry University, 2007. | |
2 | 张立东, 李永红. 放射性废树脂处理技术调研及路线选择探讨[J]. 科学时代, 2015, 14: 73-74. |
ZhangL D, LiY H. Investigation on treatment technology of radioactive spent resin and discussion on route selection[J]. Science Times, 2015, 14: 73-74. | |
3 | 罗上庚. 废离子交换树脂的优化处理[J]. 核科学与工程, 2003, 23(2): 165-172. |
LuoS G. Optimization treatment of spent ion exchange resin[J]. Chinese Journal of Nuclear Science and Engineering, 2003, 23(2): 165-172. | |
4 | WangJ, WanZ. Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry[J]. Progress in Nuclear Energy, 2015, 78: 47-55. |
5 | JantzenC M, LeeW E, OjovanM I. Radioactive waste conditioning, immobilisation, and encapsulation processes and technologies: overview and advances (chapter 7)[R]. Office of Scientific & Technical Information Technical Reports, 2012. |
6 | TapeteD, CignaF, LasaponaraR, et al. Thermal analysis and immobilisation of spent ion exchange resin in borosilicate glass[J]. New Journal of Glass & Ceramics, 2012, 2(2): 111-120. |
7 | KimK, SonS H, KimK S, et al. Treatment of radioactive ionic exchange resins by super- and sub-critical water oxidation (SCWO)[J]. Nuclear Engineering & Design, 2010, 240(10): 3654-3659. |
8 | NezuA, MorishimaT, WatanabeT. Thermal plasma treatment of waste ion-exchange resins doped with metals[J]. Thin Solid Films, 2003, 435(1): 335-339. |
9 | MoustakasK, FattaD, MalamisS, et al. Demonstration plasma gasification/vitrification system for effective hazardous waste treatment[J]. Journal of Hazardous Materials, 2005, 123(1): 120-126. |
10 | ZahorodnaM, BogoczekR, OliverosE, et al. Application of the Fenton process to the dissolution and mineralization of ion exchange resins[J]. Catalysis Today, 2007, 129(1): 200-206. |
11 | WanZ, XuL, WangJ. Treatment of spent radioactive anionic exchange resins using Fenton-like oxidation process[J]. Chemical Engineering Journal, 2016, 284: 733-740. |
12 | EunH C, YangH C, ChoY Z, et al. Study on a stable destruction method of radioactive waste ion exchange resins[J]. Journal of Radioanalytical & Nuclear Chemistry, 2009, 281(3): 585-590. |
13 | YangH C, LeeM W, YoonI H, et al. Scale-up and optimization of a two-stage molten salt oxidation reactor system for the treatment of cation exchange resins[J]. Chemical Engineering Research & Design, 2013, 91(4): 703-712. |
14 | MasonJ B, MyersC A. THOR® steam reforming technology for the treatment of ion exchange resins and more complex wastes such as fuel reprocessing wastes[C]//ASME 2010, International Conference on Environmental Remediation and Radioactive Waste Management. 2010: 171-178. |
15 | PierceE M, LukensW W, FittsJ P, et al. Experimental determination of the speciation, partitioning, and release of perrhenate as a chemical surrogate for pertechnetate from a sodalite-bearing multiphase ceramic waste form[J]. Applied Geochemistry, 2014, 42(4): 47-59. |
16 | MasonJ B, OliverT W, HillG M, et al. Studsvik processing facility update[C]//WM’03 Conference.2003. |
17 | MasonJ B, OliverT W, CarsonM P, et al. Studsvik processing facility: pyrolysis/steam reforming technology for volume and weight reduction and stabilization of llrw and mixed wastes[C]// WM’00 Conference.2000. |
18 | JantzenC M. Characterization and performance of fluidized bed steam reforming (FBSR) product as a final waste form[J]. Environmental Issues & Waste Management Technologies in the Ceramic & Nuclear Industries IX, 2004, 5 : 319-329. |
19 | JantzenC, LorierT H, PareizsJ M, et al. Fluidized bed steam reformed (FBSR) mineral waste forms: characterization and durability testing[J]. MRS Online Proceedings Library Archive, 2007: 985. |
20 | ChunU K, ChoiK, YangK H, et al. Waste minimization pretreatment via pyrolysis and oxidative pyrolysis of organic ion exchange resin[J]. Waste Management, 1998, 18(3): 183-196. |
21 | MatsudaM, FunabashiK, YusaH, et al. Influence of functional sulfonic acid group on pyrolysis characteristics for cation exchange resin[J]. Journal of Nuclear Science & Technology, 1987, 24(2): 124-128. |
22 | MoriK, TamataS, KikuchiM, et al. Method and apparatus for processing spent ion exchange resin: US4628837[P]. 1986-12-16. |
23 | SingareP U, LokhandeR S, MadyalR S. Thermal degradation studies of some strongly acidic cation exchange resins[J]. Open Journal of Physical Chemistry, 2011, 1(2): 45-54. |
24 | MatsudaM, FunabashiK, YusaH. Effect of metallic impurities on oxidation reaction of ion exchange resin (Ⅱ)[J]. Journal of Nuclear Science & Technology, 1986, 23(9): 813-818. |
25 | MatsudaM, FunabashiK, YusaH. Effect of metallic impurities on oxidation reaction of ion exchange resin (Ⅰ)[J]. Journal of Nuclear Science & Technology, 1986, 23(3): 244-252. |
26 | JuangR S, LeeT S. Oxidative pyrolysis of organic ion exchange resins in the presence of metal oxide catalysts[J]. Journal of Hazardous Materials, 2002, 92(3): 301-314. |
27 | AntonettiP, ClaireY, MassitH. Pyrolysis of cobalt and caesium doped cationic ion-exchange resin[J]. Journal of Analytical & Applied Pyrolysis, 2000, 55(1): 81-92. |
28 | LucaV, BianchiH L, ManziniA C. Cation immobilization in pyrolyzed simulated spent ion exchange resins[J]. Journal of Nuclear Materials, 2012, 424(1/2/3): 1-11. |
29 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 离子交换树脂预处理方法: GB/T 5476—2013[S]. 北京: 中国标准出版社, 2013. |
General Administration of Quality Supervision, Inspection and Quarantine of the People s Republic of China, Standardization Administration of the People s Republic of China. Methods of pretreating ion exchange resins: GB/T 5476—2013[S]. Beijing: Standards Press of China, 2013. | |
30 | NIST Standard Reference Database Number69, Sodium sulphate[DB/OL]. [2019-4-12]. https: //webbook.nist.gov/cgi/cbook.cgi? ID=C7757826&Units=SI&Mask=80#IR-Spec |
31 | HuangY J, WangH P, LiuS H, et al. Pyrolysis kinetics of spent low-level radioactive resin[J]. Nuclear Technology, 2005, 138(2): 355-360. |
32 | 陈铜, 李文钊, 张晋芬, 等. 钴基催化剂上乙烷氧化脱氢的催化作用[J]. 化学学报, 2004, 62(18): 1760-1764. |
ChenT, LiW Z, ZhangJ F, et al. Investigation of catalysis mechanism for oxidative dehydrogenation of ethane over cobalt-based catalysts[J]. Acta Chimica Sinica, 2004, 62(18): 1760-1764. | |
33 | 陈铜, 李文钊, MartinG, 等. 可动氧与载体对钴基催化剂的乙烷氧化脱氢性能的影响[J]. 催化学报, 2000, 21(3): 204-208. |
ChenT, LiW Z, MartinG, et al. Effects of support and mobile oxygen species on the behavior of Co-based catalysts for oxidative dehydrogenation of ethane[J]. Chinese Journal of Catalysis, 2000, 21(3): 204-208. | |
34 | TrigueroL, de CarolisS, BaudinM, et al. Metal oxides: O2- chemistry and dynamical effects on oxide reactivity[J]. Faraday Discussions, 1999, 114: 351-362. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[3] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[4] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[5] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[6] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[9] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[10] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[11] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[12] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[13] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[14] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[15] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||