CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4532-4546.DOI: 10.11949/0438-1157.20240633
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Haotian MA1(), Tirui JING1, Chengcheng LIU1, Turap YUSAN2, Zhe ZHANG2, Yidi WANG1(
), Qinghong WANG1, Chunmao CHEN1, Chunming XU1
Received:
2024-06-07
Revised:
2024-07-29
Online:
2025-01-03
Published:
2024-12-25
Contact:
Yidi WANG
马浩天1(), 荆体瑞1, 刘程程1, 玉散·吐拉甫2, 张喆2, 王一迪1(
), 王庆宏1, 陈春茂1, 徐春明1
通讯作者:
王一迪
作者简介:
马浩天(2000—),男,硕士研究生,mht16735367888@163.com
基金资助:
CLC Number:
Haotian MA, Tirui JING, Chengcheng LIU, Turap YUSAN, Zhe ZHANG, Yidi WANG, Qinghong WANG, Chunmao CHEN, Chunming XU. Study on reduction performance and kinetics of Sr-modified LaFeO3 for methane chemical looping reforming[J]. CIESC Journal, 2024, 75(12): 4532-4546.
马浩天, 荆体瑞, 刘程程, 玉散·吐拉甫, 张喆, 王一迪, 王庆宏, 陈春茂, 徐春明. Sr改性LaFeO3用于甲烷化学链重整的还原性能与动力学研究[J]. 化工学报, 2024, 75(12): 4532-4546.
函数名称 | 机理 | 函数编号 | g(α) | f(α) |
---|---|---|---|---|
Avrami-Erofeev方程 | 成核核增长 | A2 | [-ln(1-α)]1/2 | 2(1-α)[-ln(1-α)]1/2 |
A3 | [-ln(1-α)]1/3 | 3(1-α)[-ln(1-α)]2/3 | ||
A4 | [-ln(1-α)]1/4 | 4(1-α)[-ln(1-α)]3/4 | ||
Prout-Tompkins方程 | 自催化模型 | B1 | ln[α/(1-α)] | α/(1-α) |
Mampel Power法则 | 相界面反应(一维) | C1 | α | 1 |
收缩模型 | 收缩圆柱体(面积),相界面反应,圆柱形对称 | C2 | 1- (1-α)1/2 | 2(1-α)1/2 |
收缩球体(体积),相界面反应,球形对称 | C3 | 1- (1-α)1/3 | 3(1-α)2/3 | |
Jander方程 | 一维扩散模型 | D1 | α2 | |
三维扩散,球形对称 | D3 | 1- | ||
反应级数模型 | 一级化学反应 | R1 | -ln(1-α) | 1-α |
二级化学反应 | R2 | [1/(1-α)]-1 | (1-α)2 | |
三级化学反应 | R3 | [1/(1-α)2]-1 | (1-α) 3 |
Table 1 Differential and integral expressions of mechanism function
函数名称 | 机理 | 函数编号 | g(α) | f(α) |
---|---|---|---|---|
Avrami-Erofeev方程 | 成核核增长 | A2 | [-ln(1-α)]1/2 | 2(1-α)[-ln(1-α)]1/2 |
A3 | [-ln(1-α)]1/3 | 3(1-α)[-ln(1-α)]2/3 | ||
A4 | [-ln(1-α)]1/4 | 4(1-α)[-ln(1-α)]3/4 | ||
Prout-Tompkins方程 | 自催化模型 | B1 | ln[α/(1-α)] | α/(1-α) |
Mampel Power法则 | 相界面反应(一维) | C1 | α | 1 |
收缩模型 | 收缩圆柱体(面积),相界面反应,圆柱形对称 | C2 | 1- (1-α)1/2 | 2(1-α)1/2 |
收缩球体(体积),相界面反应,球形对称 | C3 | 1- (1-α)1/3 | 3(1-α)2/3 | |
Jander方程 | 一维扩散模型 | D1 | α2 | |
三维扩散,球形对称 | D3 | 1- | ||
反应级数模型 | 一级化学反应 | R1 | -ln(1-α) | 1-α |
二级化学反应 | R2 | [1/(1-α)]-1 | (1-α)2 | |
三级化学反应 | R3 | [1/(1-α)2]-1 | (1-α) 3 |
参数 | LaFeO3 | La0.8Sr0.2FeO3 | La0.6Sr0.4FeO3 | La0.4Sr0.6FeO3 | |
---|---|---|---|---|---|
键长/nm | Fe—O(1) | 0.20073 | 0.204536 | 0.2116 | 0.1941 |
Fe—O(2) | 0.20099 | 0.212309 | 0.1960 | 0.1920 | |
Fe—O(2) | 0.20020 | 0.180842 | 0.1960 | 0.1970 | |
键角/(°) | Fe—O(1)—Fe | 155.90 | 145.35 | 134.80 | 170.50 |
Fe—O(2)—Fe | 157.01 | 169.06 | 166.20 | 177.00 | |
键长方差 | 0.0027 | 4.50 | 1.30 | 0.11 |
Table 2 Crystal structure parameters of La1-x Sr x FeO3 oxygen carrier
参数 | LaFeO3 | La0.8Sr0.2FeO3 | La0.6Sr0.4FeO3 | La0.4Sr0.6FeO3 | |
---|---|---|---|---|---|
键长/nm | Fe—O(1) | 0.20073 | 0.204536 | 0.2116 | 0.1941 |
Fe—O(2) | 0.20099 | 0.212309 | 0.1960 | 0.1920 | |
Fe—O(2) | 0.20020 | 0.180842 | 0.1960 | 0.1970 | |
键角/(°) | Fe—O(1)—Fe | 155.90 | 145.35 | 134.80 | 170.50 |
Fe—O(2)—Fe | 157.01 | 169.06 | 166.20 | 177.00 | |
键长方差 | 0.0027 | 4.50 | 1.30 | 0.11 |
载氧体 | Fe2O3/% (质量分数) | La2O3/% (质量分数) | SrO/% (质量分数) | La/% (质量分数) | Sr/% (质量分数) | La/Sr 摩尔比 | 摩尔比 理论值 |
---|---|---|---|---|---|---|---|
LaFeO3 | 34.32 | 64.76 | — | 55.23 | — | — | — |
La0.8Sr0.2FeO3 | 35.12 | 53.72 | 10.22 | 45.81 | 8.64 | 0.78/0.22 | 0.8/0.2 |
La0.6Sr0.4FeO3 | 35.71 | 42.32 | 21.01 | 36.09 | 17.76 | 0.57/0.43 | 0.6/0.4 |
La0.4Sr0.6FeO3 | 34.36 | 27.11 | 36.57 | 28.12 | 27.92 | 0.39/0.61 | 0.4/0.6 |
Table 3 XRF compositional analysis of La1-x Sr x FeO3 oxygen carrier
载氧体 | Fe2O3/% (质量分数) | La2O3/% (质量分数) | SrO/% (质量分数) | La/% (质量分数) | Sr/% (质量分数) | La/Sr 摩尔比 | 摩尔比 理论值 |
---|---|---|---|---|---|---|---|
LaFeO3 | 34.32 | 64.76 | — | 55.23 | — | — | — |
La0.8Sr0.2FeO3 | 35.12 | 53.72 | 10.22 | 45.81 | 8.64 | 0.78/0.22 | 0.8/0.2 |
La0.6Sr0.4FeO3 | 35.71 | 42.32 | 21.01 | 36.09 | 17.76 | 0.57/0.43 | 0.6/0.4 |
La0.4Sr0.6FeO3 | 34.36 | 27.11 | 36.57 | 28.12 | 27.92 | 0.39/0.61 | 0.4/0.6 |
载氧体 | 不同氧元素百分比/% | ||||
---|---|---|---|---|---|
O1(O2-) | O2 ( | O3 (—OH, | O4 (H2O) | Oads/Olatt | |
LaFeO3 | 50.53 | 15.32 | 18.06 | 16.09 | 0.30 |
La0.8Sr0.2FeO3 | 37.18 | 18.82 | 28.27 | 15.73 | 0.51 |
La0.6Sr0.4FeO3 | 33.39 | 15.84 | 33.82 | 16.96 | 0.47 |
La0.4Sr0.6FeO3 | 42.68 | 16.55 | 29.06 | 11.72 | 0.39 |
Table 4 XPS results of oxygen element O 1s in La1-x Sr x FeO3 oxygen carrier
载氧体 | 不同氧元素百分比/% | ||||
---|---|---|---|---|---|
O1(O2-) | O2 ( | O3 (—OH, | O4 (H2O) | Oads/Olatt | |
LaFeO3 | 50.53 | 15.32 | 18.06 | 16.09 | 0.30 |
La0.8Sr0.2FeO3 | 37.18 | 18.82 | 28.27 | 15.73 | 0.51 |
La0.6Sr0.4FeO3 | 33.39 | 15.84 | 33.82 | 16.96 | 0.47 |
La0.4Sr0.6FeO3 | 42.68 | 16.55 | 29.06 | 11.72 | 0.39 |
载氧体 | 比表面积/ (m2/g) | 孔体积/ (10-3 cm3/g) | 平均孔径/nm |
---|---|---|---|
LaFeO3 | 15.27 | 2.4 | 6.41 |
La0.8Sr0.2FeO3 | 19.35 | 3.7 | 10.99 |
La0.6Sr0.4FeO3 | 17.91 | 3.2 | 5.88 |
La0.4Sr0.6FeO3 | 12.11 | 1.7 | 4.51 |
Table 5 Specific surface area and porosity data of La1-x Sr x FeO3 oxygen carriers
载氧体 | 比表面积/ (m2/g) | 孔体积/ (10-3 cm3/g) | 平均孔径/nm |
---|---|---|---|
LaFeO3 | 15.27 | 2.4 | 6.41 |
La0.8Sr0.2FeO3 | 19.35 | 3.7 | 10.99 |
La0.6Sr0.4FeO3 | 17.91 | 3.2 | 5.88 |
La0.4Sr0.6FeO3 | 12.11 | 1.7 | 4.51 |
Fig.7 Fitting curves of common kinetic equations for reaction of La0.8Sr0.2FeO3 with CH4 at different temperatures (colored lines represent fitting results of different mechanism functions, black lines represent experimental results)
载氧体 | 成核核增长模型 | 自催化枝状模型 | ||||
---|---|---|---|---|---|---|
活化能/(kJ/mol) | 指前因子/s-1 | 相关系数 | 活化能/(kJ/mol) | 指前因子/s-1 | 相关系数 | |
LaFeO3 | 159.454 | 1.337907×106 | 0.9217 | 164.87 | 1.35×107 | 0.9922 |
La0.8Sr0.2FeO3 | 112.798 | 8.586×103 | 0.9933 | 135.93 | 4.024×105 | 0.9595 |
La0.6Sr0.4FeO3 | 163.684 | 2×106 | 0.9927 | 167.27 | 1.09×107 | 0.9912 |
La0.4Sr0.6FeO3 | 167.350 | 1.988×106 | 0.9961 | 144.91 | 8.4×105 | 0.9990 |
Table 6 Main kinetic parameters of La1-x Sr x FeO3 oxygen carriers in different kinetic models
载氧体 | 成核核增长模型 | 自催化枝状模型 | ||||
---|---|---|---|---|---|---|
活化能/(kJ/mol) | 指前因子/s-1 | 相关系数 | 活化能/(kJ/mol) | 指前因子/s-1 | 相关系数 | |
LaFeO3 | 159.454 | 1.337907×106 | 0.9217 | 164.87 | 1.35×107 | 0.9922 |
La0.8Sr0.2FeO3 | 112.798 | 8.586×103 | 0.9933 | 135.93 | 4.024×105 | 0.9595 |
La0.6Sr0.4FeO3 | 163.684 | 2×106 | 0.9927 | 167.27 | 1.09×107 | 0.9912 |
La0.4Sr0.6FeO3 | 167.350 | 1.988×106 | 0.9961 | 144.91 | 8.4×105 | 0.9990 |
载氧体 | 温度区间/K | 实验方法 | 模型 | Ea/(kJ/mol) | 文献 |
---|---|---|---|---|---|
LaFeO3 | 1023~1173 | 等温TGA | 成核核增长/自催化 | 159/165 | 本研究 |
LaFeO3 | 1073~1223 | 等温质谱 | 成核核增长 | 151 | [ |
MnFe2O4 | 1073~1173 | 等温TGA | 扩散控制 | 139 | [ |
CeO2 | 873~1123 | 等温TCD | — | 137 | [ |
CoWO4 | 1123~1223 | 等温TGA | 一级化学反应 | 221 | [ |
Table 7 Reduction kinetic models and activation energies of oxygen carriers reported in literature
载氧体 | 温度区间/K | 实验方法 | 模型 | Ea/(kJ/mol) | 文献 |
---|---|---|---|---|---|
LaFeO3 | 1023~1173 | 等温TGA | 成核核增长/自催化 | 159/165 | 本研究 |
LaFeO3 | 1073~1223 | 等温质谱 | 成核核增长 | 151 | [ |
MnFe2O4 | 1073~1173 | 等温TGA | 扩散控制 | 139 | [ |
CeO2 | 873~1123 | 等温TCD | — | 137 | [ |
CoWO4 | 1123~1223 | 等温TGA | 一级化学反应 | 221 | [ |
Fig.11 (a) Mass change of LaFeO3 during CH4 reduction-air oxidation process;(b) Mass change of La0.8Sr0.2FeO3 during CH4 reduction-air oxidation process; (c) XRD patterns comparison of regenerated and fresh oxygen carrier
1 | 符冠云. 氢能在我国能源转型中的地位和作用[J]. 中国煤炭, 2019, 45(10): 15-21. |
Fu G Y. The status and role of hydrogen energy in China's energy transformation[J]. China Coal, 2019, 45(10): 15-21. | |
2 | Agency I E. Global Hydrogen Review 2022[M]. Paris: OECD, 2022. |
3 | 聂家波, 邓建悦. 燃料电池用氢气的制备工艺探讨[J]. 化工技术与开发, 2021, 50(8): 46-50. |
Nie J B, Deng J Y. Discussion on preparation technology of hydrogen for fuel cell[J]. Technology & Development of Chemical Industry, 2021, 50(8): 46-50. | |
4 | Zhang H T, Sun Z X, Hu Y H. Steam reforming of methane: current states of catalyst design and process upgrading[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111330. |
5 | Luo M, Yi Y, Wang S Z, et al. Review of hydrogen production using chemical-looping technology[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 3186-3214. |
6 | Liu R, Zhang X H, Liu T, et al. Dynamic oxygen migration and reaction over ceria-supported nickel oxides in chemical looping partial oxidation of methane[J]. Applied Catalysis B: Environmental, 2023, 328: 122478. |
7 | 付甜甜, 吐拉甫·玉散, 王邑维, 等. 镍修饰的铁基载氧体甲烷化学链制氢实验[J]. 燃烧科学与技术, 2020, 26(2): 125-132. |
Fu T T, Turap Y S, Wang Y W, et al. Performance of iron-based oxygen carriers modified by NiO in chemical looping hydrogen generation process [J]. Journal of Combustion Science and Technology, 2020, 26(2): 125-132. | |
8 | Zhang X R, Wang J, Song Z L, et al. Co3O4-CeO2 for enhanced syngas by low-temperature methane conversion with CO2 utilization via a catalytic chemical looping process[J]. Fuel Processing Technology, 2023, 245: 107741. |
9 | Li F, Kim H R, Sridhar D, et al. Syngas chemical looping gasification process: oxygen carrier particle selection and performance[J]. Energy & Fuels, 2009, 23(8): 4182-4189. |
10 | Keller M, Fung J, Leion H, et al. Cu-impregnated alumina/silica bed materials for chemical looping reforming of biomass gasification gas[J]. Fuel, 2016, 180: 448-456. |
11 | Abad A, Mattisson T, Lyngfelt A, et al. Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier[J]. Fuel, 2006, 85(9): 1174-1185. |
12 | Dharanipragada N V R A, Buelens L C, Poelman H, et al. Mg-Fe-Al-O for advanced CO2 to CO conversion: carbon monoxide yield vs. oxygen storage capacity[J]. Journal of Materials Chemistry A, 2015, 3(31): 16251-16262. |
13 | Wang B W, Yan R, Zhao H B, et al. Investigation of chemical looping combustion of coal with CuFe2O4 oxygen carrier[J]. Energy & Fuels, 2011, 25(7): 3344-3354. |
14 | Ismail M, Liu W, Scott S A. The performance of Fe2O3-CaO oxygen carriers and the interaction of iron oxides with CaO during chemical looping combustion and H2 production[J]. Energy Procedia, 2014, 63: 87-97. |
15 | Hirabayashi D, Sakai Y, Yoshikawa T, et al. Mössbauer characterization of calcium–ferrite oxides prepared by calcining Fe2O3 and CaO[J]. Hyperfine Interactions, 2006, 167(1): 809-813. |
16 | Evdou A, Zaspalis V, Nalbandian L. Ferrites as redox catalysts for chemical looping processes[J]. Fuel, 2016, 165: 367-378. |
17 | Tang M C, Xu L, Fan M H. Progress in oxygen carrier development of methane-based chemical-looping reforming: a review[J]. Applied Energy, 2015, 151: 143-156. |
18 | Li Y L, Chen M Y, Jiang L, et al. Perovskites as oxygen storage materials for chemical looping partial oxidation and reforming of methane[J]. Physical Chemistry Chemical Physics, 2024, 26(3): 1516-1540. |
19 | Dai X P, Li R J, Yu C C, et al. Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO3 (A = La, Nd, Eu) perovskite-type oxides as oxygen storage[J]. The Journal of Physical Chemistry B, 2006, 110(45): 22525-22531. |
20 | Dai X P, Cheng J, Li Z Z, et al. Reduction kinetics of lanthanum ferrite perovskite for the production of synthesis gas by chemical-looping methane reforming[J]. Chemical Engineering Science, 2016, 153: 236-245. |
21 | Taylor F H, Buckeridge J, Catlow C R A. Screening divalent metals for A- and B-site dopants in LaFeO3 [J]. Chemistry of Materials, 2017, 29(19): 8147-8157. |
22 | He F, Li X N, Zhao K, et al. The use of La1- x Sr x FeO3 perovskite-type oxides as oxygen carriers in chemical-looping reforming of methane[J]. Fuel, 2013, 108: 465-473. |
23 | He F, Chen J, Liu S, et al. La1- x Sr x FeO3 perovskite-type oxides for chemical-looping steam methane reforming: identification of the surface elements and redox cyclic performance[J]. International Journal of Hydrogen Energy, 2019, 44(21): 10265-10276. |
24 | Ma Z, Lu Y G, Liu G F. Enhanced cyclic redox reactivity of Fe2O3/Al2O3 by Sr doping for chemical-looping combustion of solid fuels[J]. Fuel, 2022, 324: 124625. |
25 | Galwey A K. Meltingand thermal decompositions of solids[J]. Journal of Thermal Analysis and Calorimetry, 2007, 87(2): 601-615. |
26 | Feng Y C, Wang N N, Guo X, et al. Characteristics of dopant distribution and surface oxygen vacancy formation for modified Fe2O3 in chemical looping combustion[J]. Fuel, 2020, 276: 117942. |
27 | Zhang Y K, Zhao Y J, Yi Q, et al. NiO/κ-CeZrO4 functional oxygen carriers with Ni δ + and oxygen vacancy synergy for chemical looping partial oxidation reforming of methane[J]. Fuel Processing Technology, 2021, 219: 106875. |
28 | Wang Y J, Zheng Y E, Wang Y H, et al. Syngas production modified by oxygen vacancies over CeO2-ZrO2-CuO oxygen carrier via chemical looping reforming of methane[J]. Applied Surface Science, 2019, 481: 151-160. |
29 | 吕熠. 基于铁酸镧化学链转化焦油模型化合物制备合成气的研究[D]. 北京: 清华大学, 2022. |
Lv Y. Study on syngas production from tar model compounds via chemical looping using lanthanum ferrite[D]. Beijing: Tsinghua University, 2022. | |
30 | Pecchi G, Reyes P, Zamora R, et al. Effect of the preparation method on the catalytic activity of La1- x Ca x FeO3 perovskite-type oxides[J]. Catalysis Today, 2008, 133: 420-427. |
31 | Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. |
32 | Hirata T. Oxygen position, octahedral distortion, and bond-valence parameter from bond lengths in Ti1- x Sn x O2 (0≤x≤1)[J]. Journal of the American Ceramic Society, 2000, 83(12): 3205-3207. |
33 | Zhu Y L, Zhou W, Yu J, et al. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions[J]. Chemistry of Materials, 2016, 28(6): 1691-1697. |
34 | Gosavi P V, Biniwale R B. Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization[J]. Materials Chemistry and Physics, 2010, 119(1/2): 324-329. |
35 | Margellou A, Manos D, Petrakis D, et al. Activation of persulfate by LaFe1- x Co x O3 perovskite catalysts for the degradation of phenolics: effect of synthetic method and metal substitution[J]. Science of the Total Environment, 2022, 832: 155063. |
36 | Li P, Chen X Y, Li Y D, et al. A review on oxygen storage capacity of CeO2-based materials: influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control[J]. Catalysis Today, 2019, 327: 90-115. |
37 | Rossetti I, Forni L. Catalytic flameless combustion of methane over perovskites prepared by flame-hydrolysis[J]. Applied Catalysis B: Environmental, 2001, 33(4): 345-352. |
38 | Zhang X H, Liu R, Liu T, et al. Redox catalysts for chemical looping methane conversion[J]. Trends in Chemistry, 2023, 5(7): 512-525. |
39 | Wei H J, Cao Y, Ji W J, et al. Lattice oxygen of La1- x Sr x MO3 (M=Mn, Ni) and LaMnO3- α F β perovskite oxides for the partial oxidation of methane to synthesis gas[J]. Catalysis Communications, 2008, 9(15): 2509-2514. |
40 | Rydén M, Lyngfelt A, Mattisson T, et al. Novel oxygen-carrier materials for chemical-looping combustion and chemical-looping reforming; La x Sr1- x Fe y Co1- y O3- δ perovskites and mixed-metal oxides of NiO, Fe2O3 and Mn3O4 [J]. International Journal of Greenhouse Gas Control, 2008, 2(1): 21-36. |
41 | Long Y H, Yang K, Gu Z H, et al. Hydrogen generation from water splitting over polyfunctional perovskite oxygen carriers by using coke oven gas as reducing agent[J]. Applied Catalysis B: Environmental, 2022, 301: 120778. |
42 | Huang Z, Gao N, Lin Y, et al. Exploring the migration and transformation of lattice oxygen during chemical looping with NiFe2O4 oxygen carrier[J]. Chemical Engineering Journal, 2022, 429: 132064. |
43 | Zhu K Y, Shi F, Zhu X F, et al. The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction[J]. Nano Energy, 2020, 73: 104761. |
44 | Jaber J O, Probert S D. Pyrolysis and gasification kinetics of Jordanian oil-shales[J]. Applied Energy, 1999, 63(4): 269-286. |
45 | Zhou L P, Zhao H, Tong Y N, et al. Evolution of coke formation and its effect on β-zeolite in catalytic cracking[J]. Industrial & Engineering Chemistry Research, 2022, 61(48): 17440-17456. |
46 | Go K S, Son S R, Kim S D. Reaction kinetics of reduction and oxidation of metal oxides for hydrogen production[J]. International Journal of Hydrogen Energy, 2008, 33(21): 5986-5995. |
47 | Otsuka K, Wang Y, Nakamura M. Direct conversion of methane to synthesis gas through gas-solid reaction using CeO2-ZrO2 solid solution at moderate temperature[J]. Applied Catalysis A: General, 1999, 183(2): 317-324. |
48 | de los Ríos Castillo T, Salinas Gutiérrez J, López Ortiz A, et al. Global kinetic evaluation during the reduction of CoWO4 with methane for the production of hydrogen[J]. International Journal of Hydrogen Energy, 2013, 38(28): 12519-12526. |
49 | Chen L Y, Liu D C, Xue J, et al. Mechanism of phase segregation in ilmenite oxygen carriers for chemical-looping combustion[J]. Chemical Engineering Journal, 2024, 479: 147921. |
[1] | Meilin SHI, Lianda ZHAO, Xingjian DENG, Jingsong WANG, Haibin ZUO, Qingguo XUE. Research progress on catalytic methane reforming process [J]. CIESC Journal, 2024, 75(S1): 25-39. |
[2] | Huanjuan ZHAO, Yingxin BAO, Kang YU, Jing LIU, Xinming QIAN. Quantitative experimental study on detonation instability of multi-component [J]. CIESC Journal, 2024, 75(S1): 339-348. |
[3] | Hongbiao XU, Liang YANG, Zidong LI, Daoping LIU. Kinetics of methane hydrate formation in saline droplets/copper foam composite system [J]. CIESC Journal, 2024, 75(9): 3287-3296. |
[4] | Yong DING, Wenjian LI, Zhaoyu CHEN, Lihui CAO, Xuanming LIU, Qiangqiang REN, Song HU, Jun XIANG. Aerobic pyrolysis kinetic and product characteristics of waste crystalline silicon photovo ltaic modules’ EVA [J]. CIESC Journal, 2024, 75(9): 3310-3319. |
[5] | Xinyi LUO, Qiang XU, Yonglu SHE, Tengfei NIE, Liejin GUO. Study on bubble dynamic characteristics and mass transfer mechanism in photoelectrochemical water splitting for hydrogen production [J]. CIESC Journal, 2024, 75(9): 3083-3093. |
[6] | Junfeng WANG, Junjie ZHANG, Wei ZHANG, Jiale WANG, Shuyan SHUANG, Yadong ZHANG. Liquid-phase discharge plasma decomposition of methanol for hydrogen production: optimization of electrode configuration [J]. CIESC Journal, 2024, 75(9): 3277-3286. |
[7] | Jialei CAO, Liyan SUN, Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO. Numerical simulation of chemical looping hydrogen generation with dual fluidized bed reactors [J]. CIESC Journal, 2024, 75(8): 2865-2874. |
[8] | Jiaqi DING, Haitao LIU, Pu ZHAO, Xiangning ZHU, Xiaofang WANG, Rong XIE. Study on intelligent rolling prediction of the multiphase flows in coal-supercritical water fluidized bed reactor for hydrogen production [J]. CIESC Journal, 2024, 75(8): 2886-2896. |
[9] | Yongqi TONG, Jie CHENG, Hai LIN, Xi CHEN, Haibo ZHAO. CPFD simulation of a 10 MWth chemical looping combustion reactor [J]. CIESC Journal, 2024, 75(8): 2949-2959. |
[10] | Li LUO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Alumina structure and surface property regulation for catalyzing methanol dehydration to dimethyl ether [J]. CIESC Journal, 2024, 75(7): 2522-2532. |
[11] | Lihao LIU, Ting HUANG, Yu YONG, Xinhao LUO, Zeming ZHAO, Shangfei SONG, Bohui SHI, Guangjin CHEN, Jing GONG. CH4-hydrate formation and solid-phase deposition in salt-sand coexisting flow systems [J]. CIESC Journal, 2024, 75(5): 1987-2000. |
[12] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[13] | Xiao XUE, Minjing SHANG, Yuanhai SU. Advances on continuous-flow synthesis of drugs in microreactors [J]. CIESC Journal, 2024, 75(4): 1439-1454. |
[14] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
[15] | Anran XU, Kai LIU, Na WANG, Zhenyu ZHAO, Hong LI, Xin GAO. Strong wave-absorbing catalyst cooperates with microwave energy to enhance fructose dehydration to produce 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1565-1577. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 354
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 142
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||