CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1831-1840.DOI: 10.11949/0438-1157.20240983
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Kun LI1(), Rui HUANG1, Jun CONG1, Haitao MA1, Longjiao CHANG3, Shaohua LUO1,2(
)
Received:
2024-09-02
Revised:
2024-10-31
Online:
2025-05-12
Published:
2025-04-25
Contact:
Shaohua LUO
李坤1(), 黄锐1, 丛君1, 马海涛1, 常龙娇3, 罗绍华1,2(
)
通讯作者:
罗绍华
作者简介:
李坤(1999—),女,硕士研究生,3504586743@qq.com
基金资助:
CLC Number:
Kun LI, Rui HUANG, Jun CONG, Haitao MA, Longjiao CHANG, Shaohua LUO. Simultaneous evolution of structural morphology and lithium storage properties in NCM622 cathode material[J]. CIESC Journal, 2025, 76(4): 1831-1840.
李坤, 黄锐, 丛君, 马海涛, 常龙娇, 罗绍华. NCM622正极材料结构形态和储锂特性的同步演变[J]. 化工学报, 2025, 76(4): 1831-1840.
Fig.4 First charge-discharge curve (a), long cycle performance (b), rate performance (c) and electrochemical impedance (d) of NCM622 prepared at different calcination temperatures
Fig.8 First charge-discharge curve (a), long cycle performance (b), rate performance (c) and electrochemical impedance (d) of NCM622 prepared at different calcinatin time
样品 | 比容量性能/(mA·h·g-1) | 文献 |
---|---|---|
NCM622 | 191.3 | 本研究 |
Li1.2Mn0.56Ni0.11Co0.13O2 | 151.4 | [ |
LiNi0.6Mn0.2Co0.2O2 | 176.3 | [ |
LiNi0.6Mn0.2Co0.2O2 | 136.0 | [ |
NMC622 | 176.6 | [ |
Ni-rich ternary cathodes | 191.1 | [ |
NCM523 | 150.0 | [ |
LiNi0.8Co0.1Mn0.1O2 | 186.1 | [ |
Table 1 Comparison of electrochemistry properties of different NCM622
样品 | 比容量性能/(mA·h·g-1) | 文献 |
---|---|---|
NCM622 | 191.3 | 本研究 |
Li1.2Mn0.56Ni0.11Co0.13O2 | 151.4 | [ |
LiNi0.6Mn0.2Co0.2O2 | 176.3 | [ |
LiNi0.6Mn0.2Co0.2O2 | 136.0 | [ |
NMC622 | 176.6 | [ |
Ni-rich ternary cathodes | 191.1 | [ |
NCM523 | 150.0 | [ |
LiNi0.8Co0.1Mn0.1O2 | 186.1 | [ |
1 | Liu Z S, Li L J, Chen J, et al. Effects of chelating agents on electrochemical properties of Na0.9Ni0.45Mn0.55O2 cathode materials[J]. Journal of Alloys and Compounds, 2021, 855: 157485. |
2 | Kunduraci M, Buluttekin R, Mutlu R N, et al. Synergistic coupling of high capacity Li1.2Mn0.54Ni0.13Co0.13O2 and high voltage LiMn1.6Ni0.4O4 lithium-ion battery cathodes[J]. Journal of Electronic Materials, 2022, 51(2): 769-777. |
3 | Zheng Z Y, Zhou J, Zhu Y S. Computational approach inspired advancements of solid-state electrolytes for lithium secondary batteries: from first-principles to machine learning[J]. Chemical Society Reviews, 2024, 53(6): 3134-3166. |
4 | Tolganbek N, Yerkinbekova Y, Kalybekkyzy S, et al. Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: a review[J]. Journal of Alloys and Compounds, 2021, 882: 160774. |
5 | Cao W P, Yan J T, Zhang P, et al. Cerium-doped lithium-rich Li1.2Mn0.56Ni0.11Co0.13O2 as cathode with high performance for lithium-ion batteries[J]. Ionics, 2022, 28(10): 4515-4526. |
6 | Jiang P, Van Fan Y, Klemeš J J. Impacts of COVID-19 on energy demand and consumption: challenges, lessons and emerging opportunities[J]. Applied Energy, 2021, 285: 116441. |
7 | Li X R, Chen X, Bai Q, et al. From atomistic modeling to materials design: computation-driven material development in lithium-ion batteries[J]. Science China Chemistry, 2024, 67(1): 276-290. |
8 | Na S, Park K. Hybrid dual conductor on Ni-rich NCM for superior electrochemical performance in lithium-ion batteries[J]. International Journal of Energy Research, 2022, 46(6): 7389-7398. |
9 | Jia Z H, Liu Y, Li H M, et al. In-situ polymerized PEO-based solid electrolytes contribute better Li metal batteries: challenges, strategies, and perspectives[J]. Journal of Energy Chemistry, 2024, 92: 548-571. |
10 | Huang Y H, Mai L Q, Xu H H, et al. Interdisciplinary research of materials and energy in honor of Nobel laureate John B. Goodenough[J]. Interdisciplinary Materials, 2022, 1(3): 321-322. |
11 | Chan K H, Liu H T, Azimi G. Synthesis of a nickel-rich LiNi0.6Mn0.2Co0.2O2 cathode material utilizing the supercritical carbonation process[J]. Industrial & Engineering Chemistry Research, 2023, 62(10): 4271-4280. |
12 | Ling J, Karuppiah C, Krishnan S G, et al. Phosphate polyanion materials as high-voltage lithium-ion battery cathode: a review[J]. Energy & Fuels, 2021, 35(13): 10428-10450. |
13 | Jiang X, Qin L, Yu H F, et al. All-dry synthesis of single-crystalline LiNi0.6Mn0.2Co0.2O2 cathodes for high-energy and long-life Li-ion batteries[J]. Industrial & Engineering Chemistry Research, 2024, 63(23): 10291-10298. |
14 | Soloy A, Flahaut D, Ledeuil J B, et al. Unraveling the morphological dependency of the LiNi0.6Mn0.2Co0.2O2 layered oxide reactivity in Li-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(7): 8669-8685. |
15 | Woodley C P, Cooper R A, Bartlett B M. Cu doping increases capacity retention in LiNi0.6Mn0.2Co0.2O2 (NMC622) by altering the potential of the Ni-based redox couple and inhibiting particle pulverization[J]. ACS Applied Energy Materials, 2024, 7(18): 7875-7884. |
16 | Azad N, Arabi H. Improving electrochemical performance of NMC622 cathode by coating with Cr2O3 nanopowders and modified current collector[J]. Journal of Materials Engineering and Performance, 2023, 32(12): 5603-5609. |
17 | Nitou M V M, Pang Y S, Wan Z, et al. LiFePO4 as a dual-functional coating for separators in lithium-ion batteries: a new strategy for improving capacity and safety[J]. Journal of Energy Chemistry, 2023, 86: 490-498. |
18 | Cronk A, Chen Y T, Deysher G, et al. Overcoming the interfacial challenges of LiFePO4 in inorganic all-solid-state batteries[J]. ACS Energy Letters, 2023, 8(1): 827-835. |
19 | Sun Y B, Chang C K, Zheng J N. Doping effects on ternary cathode materials for lithium-ion batteries: a review[J]. Chemphyschem, 2024, 25(17): e202300966. |
20 | Ma R, Zhao Z K, Fu J L, et al. Tuning cobalt-free nickel-rich layered LiNi0.9Mn0.1O2 cathode material for lithium-ion batteries[J]. ChemElectroChem, 2020, 7(12): 2637-2642. |
21 | Chu C T, Chang L M, Yin D M, et al. Large-sized nickel-cobalt-manganese composite oxide agglomerate anode material for long-life-span lithium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(12): 13811-13818. |
22 | Liu X R, Wang X L, Yue B, et al. Preparation of hierarchical LiNi x Co y Mn z O2 from solvothermal [Ni x Co y Mn z ](OH)2 via regulating the ratio of Ni, Co, and Mn and its excellent properties for lithium-ion battery cathode[J]. Journal of the Chinese Chemical Society, 2020, 67(11): 2062-2070. |
23 | Qin L, Yu H F, Jiang X, et al. All-dry solid-phase synthesis of single-crystalline Ni-rich ternary cathodes for lithium-ion batteries[J]. Science China Materials, 2024, 67(2): 650-657. |
24 | Wang H, Wu Z J, Wang M M, et al. “Acid + oxidant” treatment enables selective extraction of lithium from spent NCM523 positive electrode[J]. Batteries, 2024, 10(6): 179. |
25 | Guo X B, Song C C, Liu D C, et al. Effect of precursor structure transformation on synthesis and performance of LiNi0.5Co0.2Mn0.3O2 cathode material[J]. Solid State Sciences, 2022, 131: 106954. |
26 | Hu Q, He Y F, Ren D S, et al. Targeted masking enables stable cycling of LiNi0.6Co0.2Mn0.2O2 at 4.6V[J]. Nano Energy, 2022, 96: 107123. |
27 | Xiong Y K, Chang S H, Li Y J, et al. Enhancing surface and internal structural stability of LiNi0.8Co0.1Mn0.1O2 by yttrium phosphate dual effects[J]. Journal of Alloys and Compounds, 2022, 894: 162155. |
28 | Reissig F, Lange M A, Haneke L, et al. Synergistic effects of surface coating and bulk doping in Ni-rich lithium nickel cobalt manganese oxide cathode materials for high-energy lithium ion batteries[J]. ChemSusChem, 2022, 15(4): e202102220. |
29 | Akhilash M, Salini P S, John B, et al. Surface modification on nickel rich cathode materials for lithium-ion cells: a mini review[J]. Chemical Record, 2023, 23(11): e202300132. |
30 | Soloy A, Flahaut D, Foix D, et al. Reactivity at the electrode-electrolyte interfaces in Li-ion and gel electrolyte lithium batteries for LiNi0.6Mn0.2Co0.2O2 with different particle sizes[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 28792-28806. |
31 | You L Z, Li G X, Huang B, et al. Surface-reinforced NCM811 with enhanced electrochemical performance for Li-ion batteries[J]. Journal of Alloys and Compounds, 2022, 918: 165488. |
[1] | Di WU, Shipeng LIU, Wenwei WANG, Jiuchun JIANG, Xiaoguang YANG. Recent advances in the influence of mechanical pressure on the performance of lithium metal batteries [J]. CIESC Journal, 2025, 76(4): 1422-1431. |
[2] | Wei LIN, Jian DU, Chen YAO, Jiahao ZHU, Wei WANG, Xiaotao ZHENG, Jianmin XU, Jiuyang YU. Study on ion transport and nucleation mechanism in electrochemical water softening process [J]. CIESC Journal, 2025, 76(4): 1788-1799. |
[3] | Ziyi XU, Yang XI, Zewen SONG, Haijun ZHOU. Advances in the application of carbon nanomaterials for zinc ion batteries [J]. CIESC Journal, 2025, 76(1): 40-52. |
[4] | Zhijiao JI, Xiaofang ZHANG, Wen GAN, Yunpeng XUE. Influence of support on the performance of single atom electrocatalyst for ammonia synthesis and the control strategy [J]. CIESC Journal, 2025, 76(1): 18-39. |
[5] | Shan GUO, Yu TIAN, Yongbin XU, Peng WANG, Zhiming LIU. Synthesis of a high-efficacy medium-entropy alloy catalyst via the recycling of spent batteries and its subsequent performance evaluation [J]. CIESC Journal, 2025, 76(1): 231-240. |
[6] | Dewei WU, Zhengpeng WANG, Yue ZHOU, Xiaoning LI, Zhao CHEN, Zhuo LI, Chengwei LIU, Xuegang LI, Wende XIAO. Preparation of silicon carbon anode for lithium-ion batteries by fixed bed and lithium storage properties [J]. CIESC Journal, 2024, 75(S1): 300-308. |
[7] | Shuying WANG, Tao ZUO, Zhiwei SHI, Xiaoming FAN, Weixin ZHANG. Synthesis and sodium ion storage properties of cation exchange resin based mesoporous graphitic carbon [J]. CIESC Journal, 2024, 75(9): 3338-3347. |
[8] | Dan PENG, Junjie LU, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress of functional electrolyte for high-voltage LiCoO2 battery [J]. CIESC Journal, 2024, 75(9): 3028-3040. |
[9] | Tianwen WANG, Su YAN, Mengyuan ZHAO, Tianrang YANG, Jianguo LIU. Mechanisms of chromium poisoning in solid oxide cell air electrodes and research advances in enhancing chromium-resistivity [J]. CIESC Journal, 2024, 75(6): 2091-2108. |
[10] | Xinzhe PEI, Zhuxing SUN, Yuxiang LIN, Chaoyang ZHANG, Yong QIAN, Xingcai LYU. Study of anode materials for electrocatalytic decomposition of liquid ammonia [J]. CIESC Journal, 2024, 75(5): 1843-1854. |
[11] | Ang LI, Zhenyu ZHAO, Hong LI, Xin GAO. Microwave induced construction of highly dispersed Pd/FeP catalysts and their electrocatalytic performance [J]. CIESC Journal, 2024, 75(4): 1594-1606. |
[12] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
[13] | Xi WU, Bo SUN, Yindong LIU, Chuanlei QI, Kaiyi CHEN, Luhai WANG, Chong XU, Yongfeng LI. Research progress in preparation technology of pitch-based carbon anode materials for sodium-ion batteries [J]. CIESC Journal, 2024, 75(4): 1270-1283. |
[14] | Yunxuan LI, Xinyue LIU, Xi CHEN, Wen LIU, Mingyue ZHOU, Xingying LAN. Energy storage technologies based on solid-liquid redox-targeting reactions: materials, devices, and kinetics [J]. CIESC Journal, 2024, 75(4): 1222-1240. |
[15] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 182
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 164
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||