CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 3018-3028.DOI: 10.11949/0438-1157.20241320
• Energy and environmental engineering • Previous Articles Next Articles
Lifang GONG1,2(), Meihui REN3,4, Jichun JIANG3,4, Guangzhao GUO2, Hongyun HU1, Yongda HUANG1, Hong YAO1(
)
Received:
2024-11-18
Revised:
2025-01-13
Online:
2025-07-09
Published:
2025-06-25
Contact:
Hong YAO
龚丽芳1,2(), 任美慧3,4, 蒋吉春3,4, 郭光召2, 胡红云1, 黄永达1, 姚洪1(
)
通讯作者:
姚洪
作者简介:
龚丽芳(1988—),女,硕士研究生,高级工程师,gonglifang@grandblue.cn
基金资助:
CLC Number:
Lifang GONG, Meihui REN, Jichun JIANG, Guangzhao GUO, Hongyun HU, Yongda HUANG, Hong YAO. Study on on-line monitoring and selective catalytic reduction removal of aromatic hydrocarbon from the flue gas of waste incineration[J]. CIESC Journal, 2025, 76(6): 3018-3028.
龚丽芳, 任美慧, 蒋吉春, 郭光召, 胡红云, 黄永达, 姚洪. 垃圾焚烧烟气中芳香烃化合物在线监测和选择性催化还原脱除研究[J]. 化工学报, 2025, 76(6): 3018-3028.
参数 | 数值 |
---|---|
垃圾日处理量/(t/d) | 500 |
锅炉额定蒸发量/(t/h) | 50.5 |
烟气流量(SCR)/(m3/h,标准工况) | 96439 |
炉温/℃ | >850 |
一次风温/℃ | 230 |
省煤器出口烟温/℃ | 220 |
反应塔出口温度/℃ | 139 |
SCR反应器温度/℃ | 180 |
SO2日均值/(mg/m3,标准工况) | 50 |
NO x 日均值/(mg/m3,标准工况) | 150 |
CO日均值/(mg/m3,标准工况) | 50 |
HCl日均值/(mg/m3,标准工况) | 10 |
颗粒物日均值/(mg/m3,标准工况) | 10 |
Table 1 Operation and key parameters of domestic waste incineration power plant
参数 | 数值 |
---|---|
垃圾日处理量/(t/d) | 500 |
锅炉额定蒸发量/(t/h) | 50.5 |
烟气流量(SCR)/(m3/h,标准工况) | 96439 |
炉温/℃ | >850 |
一次风温/℃ | 230 |
省煤器出口烟温/℃ | 220 |
反应塔出口温度/℃ | 139 |
SCR反应器温度/℃ | 180 |
SO2日均值/(mg/m3,标准工况) | 50 |
NO x 日均值/(mg/m3,标准工况) | 150 |
CO日均值/(mg/m3,标准工况) | 50 |
HCl日均值/(mg/m3,标准工况) | 10 |
颗粒物日均值/(mg/m3,标准工况) | 10 |
序号 | 编号 | 名称 | 分子式 | 精确质量数 | 提取质量数 | 质量数偏差 |
---|---|---|---|---|---|---|
1 | A1 | 苯 | C6H6 | 78.04695 | 78.05300 | 0.00605 |
2 | A2 | 甲苯 | C7H8 | 92.06260 | 92.07000 | 0.00740 |
3 | A3 | 二甲苯/乙苯 | C8H10 | 106.07825 | 106.07900 | 0.00075 |
4 | A4 | 三甲苯 | C9H12 | 120.09390 | 120.10300 | 0.00910 |
5 | A5 | 四甲苯 | C10H14 | 134.10955 | 134.12600 | 0.01645 |
6 | B1 | 苯酚 | C6H6O | 94.04187 | 94.04200 | 0.00013 |
7 | B2 | 甲基苯酚 | C7H8O | 108.05752 | 108.05800 | 0.00048 |
8 | B3 | 二甲基苯酚 | C8H10O | 122.07317 | 122.07900 | 0.00583 |
9 | B4 | 硝基苯酚 | C6H5NO3 | 139.02696 | 139.02000 | -0.00696 |
10 | C1 | 萘 | C10H8 | 128.06260 | 128.06900 | 0.00640 |
11 | C2 | 苊烯 | C12H8 | 152.06260 | 152.06300 | 0.00040 |
12 | C3 | 苊 | C12H10 | 154.07825 | 154.07900 | 0.00075 |
13 | C4 | 芴 | C13H10 | 166.07825 | 166.05300 | -0.02525 |
14 | C5 | 菲 蒽 | C14H10 | 178.07825 | 178.08200 | 0.00375 |
15 | C6 | 荧蒽 芘 | C16H10 | 202.07825 | 202.08700 | 0.00875 |
16 | C7 | 苯并[a]蒽 䓛 | C18H12 | 228.09390 | 228.09500 | 0.00110 |
17 | C8 | 苯并[b]荧蒽 苯并[k]荧蒽 苯并[a]芘 | C20H12 | 252.09390 | 252.10500 | 0.01110 |
18 | C9 | 茚并[1,2,3-c,d]芘 苯并[g,h,i]芘 | C22H12 | 276.09390 | 276.09400 | 0.00010 |
19 | C10 | 二苯并[a, h]蒽 | C22H14 | 278.10955 | 278.11000 | 0.00045 |
20 | C11 | 二苯并对二![]() | C12H8O2 | 184.05244 | 184.05300 | 0.00056 |
21 | C12 | 二苯并呋喃 | C12H8O | 168.05752 | 168.05800 | 0.00048 |
22 | D1 | 一氯苯 | C6H5Cl | 112.00798 | 111.98100 | -0.02698 |
23 | D2 | 二氯苯 | C6H4Cl2 | 145.96901 | 145.98200 | 0.01299 |
24 | D3 | 三氯苯 | C6H3Cl3 | 179.93004 | 179.94500 | 0.01496 |
25 | D4 | 四氯苯 | C6H2Cl4 | 215.88811 | 215.88900 | 0.00089 |
26 | D5 | 五氯苯 | C6HCl5 | 249.84915 | 249.85000 | 0.00085 |
27 | D6 | 六氯苯 | C6Cl6 | 283.81017 | 283.81100 | 0.00083 |
28 | E1 | 一氯苯酚 | C6H5OCl | 128.00290 | 127.98000 | -0.02290 |
29 | E2 | 二氯苯酚 | C6H4OCl2 | 161.96393 | 162.00000 | 0.03607 |
30 | E3 | 三氯苯酚 | C6H3OCl3 | 195.92496 | 195.97200 | 0.04704 |
31 | E4 | 四氯苯酚 | C6H2OCl4 | 231.88303 | 231.88400 | 0.00097 |
32 | E5 | 五氯苯酚 | C6HOCl5 | 265.84407 | 265.84500 | 0.00093 |
33 | F1 | 一氯甲苯 | C7H7Cl | 126.02362 | 126.03500 | 0.01138 |
34 | F2 | 二氯甲苯 | C7H6Cl2 | 159.98466 | 160.00300 | 0.01834 |
35 | F3 | 三氯甲苯 | C7H5Cl3 | 193.94569 | 193.97000 | 0.02431 |
36 | F4 | 四氯甲苯 | C7H4Cl4 | 229.90376 | 229.90400 | 0.00024 |
37 | F5 | 五氯甲苯 | C7H3Cl6 | 298.83365 | 298.83400 | 0.00035 |
38 | G1 | 一氯甲酚 | C7H7ClO | 142.01854 | 142.01900 | 0.00046 |
39 | G2 | 二氯甲酚 | C7H6Cl2O | 175.97958 | 175.98000 | 0.00042 |
40 | G3 | 三氯甲酚 | C7H5Cl3O | 209.94061 | 209.94100 | 0.00039 |
41 | G4 | 四氯甲酚 | C7H4Cl4O | 245.89868 | 245.89900 | 0.00032 |
Table 2 Information on numbering, names, molecular formula and mass number of 41 aromatic hydrocarbons
序号 | 编号 | 名称 | 分子式 | 精确质量数 | 提取质量数 | 质量数偏差 |
---|---|---|---|---|---|---|
1 | A1 | 苯 | C6H6 | 78.04695 | 78.05300 | 0.00605 |
2 | A2 | 甲苯 | C7H8 | 92.06260 | 92.07000 | 0.00740 |
3 | A3 | 二甲苯/乙苯 | C8H10 | 106.07825 | 106.07900 | 0.00075 |
4 | A4 | 三甲苯 | C9H12 | 120.09390 | 120.10300 | 0.00910 |
5 | A5 | 四甲苯 | C10H14 | 134.10955 | 134.12600 | 0.01645 |
6 | B1 | 苯酚 | C6H6O | 94.04187 | 94.04200 | 0.00013 |
7 | B2 | 甲基苯酚 | C7H8O | 108.05752 | 108.05800 | 0.00048 |
8 | B3 | 二甲基苯酚 | C8H10O | 122.07317 | 122.07900 | 0.00583 |
9 | B4 | 硝基苯酚 | C6H5NO3 | 139.02696 | 139.02000 | -0.00696 |
10 | C1 | 萘 | C10H8 | 128.06260 | 128.06900 | 0.00640 |
11 | C2 | 苊烯 | C12H8 | 152.06260 | 152.06300 | 0.00040 |
12 | C3 | 苊 | C12H10 | 154.07825 | 154.07900 | 0.00075 |
13 | C4 | 芴 | C13H10 | 166.07825 | 166.05300 | -0.02525 |
14 | C5 | 菲 蒽 | C14H10 | 178.07825 | 178.08200 | 0.00375 |
15 | C6 | 荧蒽 芘 | C16H10 | 202.07825 | 202.08700 | 0.00875 |
16 | C7 | 苯并[a]蒽 䓛 | C18H12 | 228.09390 | 228.09500 | 0.00110 |
17 | C8 | 苯并[b]荧蒽 苯并[k]荧蒽 苯并[a]芘 | C20H12 | 252.09390 | 252.10500 | 0.01110 |
18 | C9 | 茚并[1,2,3-c,d]芘 苯并[g,h,i]芘 | C22H12 | 276.09390 | 276.09400 | 0.00010 |
19 | C10 | 二苯并[a, h]蒽 | C22H14 | 278.10955 | 278.11000 | 0.00045 |
20 | C11 | 二苯并对二![]() | C12H8O2 | 184.05244 | 184.05300 | 0.00056 |
21 | C12 | 二苯并呋喃 | C12H8O | 168.05752 | 168.05800 | 0.00048 |
22 | D1 | 一氯苯 | C6H5Cl | 112.00798 | 111.98100 | -0.02698 |
23 | D2 | 二氯苯 | C6H4Cl2 | 145.96901 | 145.98200 | 0.01299 |
24 | D3 | 三氯苯 | C6H3Cl3 | 179.93004 | 179.94500 | 0.01496 |
25 | D4 | 四氯苯 | C6H2Cl4 | 215.88811 | 215.88900 | 0.00089 |
26 | D5 | 五氯苯 | C6HCl5 | 249.84915 | 249.85000 | 0.00085 |
27 | D6 | 六氯苯 | C6Cl6 | 283.81017 | 283.81100 | 0.00083 |
28 | E1 | 一氯苯酚 | C6H5OCl | 128.00290 | 127.98000 | -0.02290 |
29 | E2 | 二氯苯酚 | C6H4OCl2 | 161.96393 | 162.00000 | 0.03607 |
30 | E3 | 三氯苯酚 | C6H3OCl3 | 195.92496 | 195.97200 | 0.04704 |
31 | E4 | 四氯苯酚 | C6H2OCl4 | 231.88303 | 231.88400 | 0.00097 |
32 | E5 | 五氯苯酚 | C6HOCl5 | 265.84407 | 265.84500 | 0.00093 |
33 | F1 | 一氯甲苯 | C7H7Cl | 126.02362 | 126.03500 | 0.01138 |
34 | F2 | 二氯甲苯 | C7H6Cl2 | 159.98466 | 160.00300 | 0.01834 |
35 | F3 | 三氯甲苯 | C7H5Cl3 | 193.94569 | 193.97000 | 0.02431 |
36 | F4 | 四氯甲苯 | C7H4Cl4 | 229.90376 | 229.90400 | 0.00024 |
37 | F5 | 五氯甲苯 | C7H3Cl6 | 298.83365 | 298.83400 | 0.00035 |
38 | G1 | 一氯甲酚 | C7H7ClO | 142.01854 | 142.01900 | 0.00046 |
39 | G2 | 二氯甲酚 | C7H6Cl2O | 175.97958 | 175.98000 | 0.00042 |
40 | G3 | 三氯甲酚 | C7H5Cl3O | 209.94061 | 209.94100 | 0.00039 |
41 | G4 | 四氯甲酚 | C7H4Cl4O | 245.89868 | 245.89900 | 0.00032 |
Fig.3 Dynamic emission characteristics (a), principal component analysis score plot (b) and biplot plot (c) of aromatic hydrocarbon in the flue gas at inlet and outlet of SCR equipment
Fig.4 (a) Removal effect of SCR equipment on aromatic hydrocarbons; (b)The relative percentage of different kinds of aromatic hydrocarbons changed before and after SCR equipment
[1] | Kamal M S, Razzak S A, Hossain M M. Catalytic oxidation of volatile organic compounds (VOCs)—a review[J]. Atmospheric Environment, 2016, 140: 117-134. |
[2] | Li Y, Zhao X G, Li Y B, et al. Waste incineration industry and development policies in China[J]. Waste Management, 2015, 46: 234-241. |
[3] | Phua Z, Giannis A, Dong Z L, et al. Characteristics of incineration ash for sustainable treatment and reutilization[J]. Environmental Science and Pollution Research International, 2019, 26(17): 16974-16997. |
[4] | Słomińska M, Konieczka P, Namieśnik J. The fate of BTEX compounds in ambient air[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(5): 455-472. |
[5] | Wang X S, Li J L, Zhang Y H, et al. Ozone source attribution during a severe photochemical smog episode in Beijing, China[J]. Science in China Series B: Chemistry, 2009, 52(8): 1270-1280. |
[6] | Zhou H, Meng A H, Long Y Q, et al. A review of dioxin-related substances during municipal solid waste incineration[J]. Waste Management, 2015, 36: 106-118. |
[7] | McKay G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review[J]. Chemical Engineering Journal, 2002, 86(3): 343-368. |
[8] | 任美慧, 樊芸, 王胜, 等. SCR装置对焦炉煤气燃烧废气中PCDD/Fs、PCBs和PCNs的协同脱除[J]. 环境科学, 2019, 40(1): 143-148. |
Ren M H, Fan Y, Wang S, et al. Simultaneous removal of polychlorinated dibenzo-p-dioxins/dibenzofurans, polychlorinated biphenyls, and polychlorinated naphthalenes from flues gases from coke gas burning using selective catalytic reduction equipment[J]. Environmental Science, 2019, 40(1): 143-148. | |
[9] | 环境保护部. 固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法: [S]. 北京: 中国环境出版社, 2014. |
Ministry of Environmental Protection. Stationary source emission— Determination of volatile organic compounds—Sorbent adsorption and thermal desorption gas chromatography mass spectrometry method: [S]. Beijing: China Environmental Press, 2014. | |
[10] | 环境保护部. 环境空气 挥发性有机物的测定 便携式傅里叶红外仪法: [S]. 北京: 中国环境出版社, 2017. |
Ministry of Environmental Protection. Ambient air— Determination of volatile organic compounds—Portable fourier infrared spectrometer method: [S]. Beijing: China Environmental Press, 2017. | |
[11] | 生态环境部. 环境空气 挥发性有机物的应急测定 便携式气相色谱-质谱法: [S]. 北京: 中国环境出版社, 2021. |
Ministry of Ecology and Environment. Ambient air—Emergency determination of volatile organic compounds—Portable gas chromatography-mass spectrometry: [S]. Beijing: China Environmental Press, 2021. | |
[12] | Gholami F, Tomas M, Gholami Z, et al. Technologies for the nitrogen oxides reduction from flue gas: a review[J]. Science of the Total Environment, 2020, 714: 136712. |
[13] | Sun S R, Liu W B, Guan W S, et al. Effects of air pollution control devices on volatile organic compounds reduction in coal-fired power plants[J]. Science of the Total Environment, 2021, 782: 146828. |
[14] | Chen L, Liao Y F, Xin S R, et al. Simultaneous removal of NO and volatile organic compounds (VOCs) by Ce/Mo doping-modified selective catalytic reduction (SCR) catalysts in denitrification zone of coal-fired flue gas[J]. Fuel, 2020, 262: 116485. |
[15] | Chen H, Li L, Lei Y L, et al. Public health effect and its economics loss of PM2.5 pollution from coal consumption in China[J]. Science of the Total Environment, 2020, 732: 138973. |
[16] | 蒋蕾, 刘巍, 窦健, 等. 自动富集-单光子电离质谱在线测量氯酚的研究[J]. 质谱学报, 2014, 35(6): 488-494. |
Jiang L, Liu W, Dou J, et al. Online determination of chlorophenols using photon ionization time-of-flight mass spectrometry with full-automatic enrichment inlet system[J]. Journal of Chinese Mass Spectrometry Society, 2014, 35(6): 488-494. | |
[17] | 齐雅晨, 刘巍, 蒋吉春, 等. 无窗射频放电单光子电离质谱在线监测氯苯的研究[J]. 质谱学报, 2015, 36(6): 506-512. |
Qi Y C, Liu W, Jiang J C, et al. On-line analysis of cholrobenzenes by windowless RF discharge signal photon ionization mass spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(6): 506-512. | |
[18] | 李庆运, 花磊, 蒋吉春, 等. 用于催化过程在线监测的高分辨光电离飞行时间质谱仪的研制和应用[J]. 分析化学, 2015, 43(10): 1531-1537. |
Li Q Y, Hua L, Jiang J C, et al. Development and application of high resolution photoionization time-of-flight mass spectrometer for online monitoring of catalytic processes[J]. Chinese Journal of Analytical Chemistry, 2015, 43(10): 1531-1537. | |
[19] | Bian Y, Zhang Y, Zhou Y, et al. BTEX in the environment: an update on sources, fate, distribution, pretreatment, analysis, and removal techniques[J]. Chemical Engineering Journal, 2022, 435: 134825. |
[20] | 马慧莲, 张海军, 李德意, 等. 选择性催化还原装置对固体废物焚烧过程挥发性有机物排放的影响[J]. 环境化学, 2022, 41(5): 1530-1537. |
Ma H L, Zhang H J, Li D Y, et al. Influence of selective catalytic reduction equipment on the emission of volatile organic compounds from the incineration of solid waste[J]. Environmental Chemistry, 2022, 41(5): 1530-1537. | |
[21] | Wang Q L, Hung P C, Lu S Y, et al. Catalytic decomposition of gaseous PCDD/fs over V2O5/TiO2-CNTs catalyst: effect of NO and NH3 addition[J]. Chemosphere, 2016, 159: 132-137. |
[22] | Ali S A, Ogunronbi K E, Al-Khattaf S S. Kinetics of dealkylation-transalkylation of C9 alkyl-aromatics over zeolites of different structures[J]. Chemical Engineering Research and Design, 2013, 91(12): 2601-2616. |
[23] | Ali S A, Aitani A M, Ercan C, et al. Conversion of heavy reformate into xylenes over mordenite-based catalysts[J]. Chemical Engineering Research and Design, 2011, 89(10): 2125-2135. |
[24] | Bernt C M, Manesewan H, Chui M G, et al. Temperature tuning the catalytic reactivity of Cu-doped porous metal oxides with lignin models[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2510-2516. |
[25] | Tsai T C, Liu S B, Wang I. Metal supported zeolite for heavy aromatics transalkylation process[J]. Catalysis Surveys from Asia, 2009, 13(2): 94-103. |
[26] | Hernández-Ospina D A, Osorio-González C S, Miri S, et al. New perspectives on the anaerobic degradation of BTEX: mechanisms, pathways, and intermediates[J]. Chemosphere, 2024, 361: 142490. |
[27] | 国家环境保护局. 大气污染物综合排放标准: [S]. 北京: 中国标准出版社, 1996. |
National Environmental Protection Agency. Integrated emission standard of air pollutants: [S]. Beijing: Standards Press of China, 1996. | |
[28] | Dat N D, Chang M B. Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies[J]. Science of the Total Environment, 2017, 609: 682-693. |
[29] | Kang D R, Bian Y, Shi Q Q, et al. A review of synergistic catalytic removal of nitrogen oxides and chlorobenzene from waste incinerators[J]. Catalysts, 2022, 12(11): 1360. |
[30] | Olaniran A O, Igbinosa E O. Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes[J]. Chemosphere, 2011, 83(10): 1297-1306. |
[31] | Dvořák R, Chlápek P, Jecha D, et al. New approach to common removal of dioxins and NO x as a contribution to environmental protection[J]. Journal of Cleaner Production, 2010, 18(9): 881-888. |
[1] | Jialang HU, Mingyuan JIANG, Lyuming JIN, Yonggang ZHANG, Peng HU, Hongbing JI. Machine learning-assisted high-throughput computational screening of MOFs and advances in gas separation research [J]. CIESC Journal, 2025, 76(5): 1973-1996. |
[2] | Yinjie ZHOU, Sibei JI, Songyang HE, Xu JI, Ge HE. Machine learning-assisted high-throughput screening approach for CO2 separation from CO2-rich natural gas using metal-organic frameworks [J]. CIESC Journal, 2025, 76(3): 1093-1101. |
[3] | Peizhou DONG, Huiwen YU, Lingcao TAN, Baiping XU, Fang YANG. Mixing in a partially-filled screw channel of a baffled non-twin screw using the moving-particle semi-implicit method [J]. CIESC Journal, 2025, 76(1): 198-207. |
[4] | Junhao HUANG, Keliang PANG, Fangyuan SUN, Fujun LIU, Zhiyuan GU, Long HAN, Yanquan DUAN, Yanhui FENG. Influence of bell structure of coke dry quenching furnace on coke distribution [J]. CIESC Journal, 2024, 75(S1): 158-169. |
[5] | Ji LI, Jianlin WANG, Rui HE, Xinjie ZHOU, Wen WANG, Liqiang ZHAO. DBSVDD-RVR based online soft sensing for quality variables in multimode batch processes [J]. CIESC Journal, 2024, 75(9): 3231-3241. |
[6] | Jiayu XU, Feiguo CHEN, Ji XU, Wei GE. Multiscale mixing index for granular systems [J]. CIESC Journal, 2024, 75(6): 2214-2221. |
[7] | Xinxin XU, Yunli JI, Xianfeng WU, Xia AN, Xu WU. Hydrotalcite-derived CuMgFe-LDO catalyst for simultaneous abatement of nitrogen oxides and methanol [J]. CIESC Journal, 2024, 75(5): 1890-1902. |
[8] | Xi MENG, Yan WANG, Zijian SUN, Junfei QIAO. Prediction of NO x emissions for municipal solid waste incineration processes using attention modular neural network [J]. CIESC Journal, 2024, 75(2): 593-603. |
[9] | Jian RUAN, Shuang LI, Zhenghui WEN. Application of automation and artificial intelligence in flow chemistry [J]. CIESC Journal, 2024, 75(11): 4120-4140. |
[10] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[11] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[12] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[13] | Ke YANG, Yue JIA, Hong JI, Zhixiang XING, Juncheng JIANG. Study on the inhibition effect and mechanism of waste incineration fly ash on gas explosion pressure and flame propagation [J]. CIESC Journal, 2023, 74(8): 3597-3607. |
[14] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[15] | Yilin LIU, Yu LI, Yaxiong YU, Zheqing HUANG, Qiang ZHOU. Construction of two parameter mesoscale heat transfer model for gas-solid flow based on resetting temperature method [J]. CIESC Journal, 2022, 73(6): 2612-2621. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 23
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 68
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||