CIESC Journal ›› 2024, Vol. 75 ›› Issue (11): 4120-4140.DOI: 10.11949/0438-1157.20240836
• Reviews and monographs • Previous Articles Next Articles
Jian RUAN(), Shuang LI, Zhenghui WEN(
)
Received:
2024-07-24
Revised:
2024-08-29
Online:
2024-12-26
Published:
2024-11-25
Contact:
Zhenghui WEN
通讯作者:
温正慧
作者简介:
阮见(1997—),男,硕士,初级工程师,jian-ruan@ylab.ac.cn
基金资助:
CLC Number:
Jian RUAN, Shuang LI, Zhenghui WEN. Application of automation and artificial intelligence in flow chemistry[J]. CIESC Journal, 2024, 75(11): 4120-4140.
阮见, 李双, 温正慧. 自动化与智能化在流动化学中的应用[J]. 化工学报, 2024, 75(11): 4120-4140.
Fig.3 The user interface of the automated platform. (a) LabView-based SPS-flow synthesis platform user interface[31]; (b) LabView and MATLAB-based High-throughput electrochemical microfluidic platform user interface[32]; (c) Python-based RoboChem platform user interface[35]; (d) Python-based NIMS-OS platform user interface[37]
仪器类型 | 连接方式 | 优点 | 缺点 | 响应时间 |
---|---|---|---|---|
红外光谱(IR) | in-line | 快速数据获取 非破坏性检测 能分析气体、液体和固体样品 | 提供的结构信息有限 对高温、高压的适应性较差 | 2 s~2 min |
紫外/可见吸收光谱 (UV-vis) | in-line | 高灵敏度 能快速进行定性和定量分析 | 对光敏感试剂可能产生影响 提供的结构信息较少 | 2~30 s |
核磁共振波谱(NMR) | in-line on-line | 非破坏性检测 提供详细的结构信息 能检测反应中的瞬态中间体 分析速度快 | 设备成本高 | 1 min~2 h |
高效液相色谱(HPLC) | at-line | 提供深入的样品分析 适用于复杂混合物 高灵敏度 | 需要标定过程 需要样品前处理 分析时间相对较长 | 5~ 30 min |
气相色谱(GC) | at-line | 高分辨率 快速分析 | 需要标定过程 仅限于挥发性和热稳定性化合物 需要样品前处理 | 5~30 min |
质谱(MS) | at-line | 高灵敏度 分析速度快 适用范围广 能提供详细的结构信息 | 设备成本高 破坏性检测 | 1 s~2 min |
拉曼光谱(Raman) | in-line | 非破坏性检测 分析速度快 适用于含水体系 | 灵敏度低 提供的结构化信息少 | 1~30 s |
Table 1 Comparison of common online analysis device connection mode and advantages/disadvantages[68]
仪器类型 | 连接方式 | 优点 | 缺点 | 响应时间 |
---|---|---|---|---|
红外光谱(IR) | in-line | 快速数据获取 非破坏性检测 能分析气体、液体和固体样品 | 提供的结构信息有限 对高温、高压的适应性较差 | 2 s~2 min |
紫外/可见吸收光谱 (UV-vis) | in-line | 高灵敏度 能快速进行定性和定量分析 | 对光敏感试剂可能产生影响 提供的结构信息较少 | 2~30 s |
核磁共振波谱(NMR) | in-line on-line | 非破坏性检测 提供详细的结构信息 能检测反应中的瞬态中间体 分析速度快 | 设备成本高 | 1 min~2 h |
高效液相色谱(HPLC) | at-line | 提供深入的样品分析 适用于复杂混合物 高灵敏度 | 需要标定过程 需要样品前处理 分析时间相对较长 | 5~ 30 min |
气相色谱(GC) | at-line | 高分辨率 快速分析 | 需要标定过程 仅限于挥发性和热稳定性化合物 需要样品前处理 | 5~30 min |
质谱(MS) | at-line | 高灵敏度 分析速度快 适用范围广 能提供详细的结构信息 | 设备成本高 破坏性检测 | 1 s~2 min |
拉曼光谱(Raman) | in-line | 非破坏性检测 分析速度快 适用于含水体系 | 灵敏度低 提供的结构化信息少 | 1~30 s |
Fig.6 Summary of automated inline separation: (a) automated inline nanofiltration to recycle homogeneous catalyst[69]; (b) automated continuous crystallization[74]; (c) automated inline flash chromatography[77]
Fig.7 Continuous flow automated system: (a) continuous flow microreactor automation platform[78]; (b) the platform for automated nanomolescale reaction screening and micromole-scale synthesis in flow[62]
Fig.9 Automated continuous-flow electrochemical platform: (a) multifunctional microfluidic platform for high-throughput experimentation of electrochemistry[32]; (b) automated slug-based electrochemical flow platform[80]
Fig.10 Automated flow peptide synthesis experimental platform: (a) automated flow synthesis of proteins[81]; (b) automated solid-phase synthesis of PMOs[82]
Fig.11 Automated systems for multistep synthesis: (a) automated switching-valve-based continuous-flow system, AutoSyn[70]; (b) radial synthesis platform[83]; (c) automated continuous-flow solid phase synthesis platform[31]
Fig.12 DoE method used to optimize flow synthesis process. (a) Synthesis of 1,2,4-oxadiazole and 1,2,4-triazole small molecule compound libraries[88]; (b) Synthesis of the fused pyrimidinone and quinolone derivatives under high temperature and pressure[90]
Fig.16 Bayesian optimization-based intelligent synthetic system. (a) Modular robot flow synthesis platform[100]; (b) RoboChem, a closed-loop, multi-objective optimization platform for photocatalysis system[35]; (c) Multi-task Bayesian optimization synthesis platform[102]
Fig.20 The preliminary applications of automated experiment platform in cloud laboratory field: (a) cross-border cloud laboratory systems[111]; (b) the cloud platform coordinates multi-laboratory discovery and optimization of organic laser emitters[34]
1 | 张锁江, 彭孝军, 朱旺喜, 等. 化学工程发展战略: 高端化、绿色化、智能化[M]. 北京: 化学工业出版社, 2023. |
Zhang S J, Peng X J, Zhu W X, et al. Chemical Engineering Development Strategy:High End, Green, Intelligent[M]. Beijing: Chemical Industry Press, 2023. | |
2 | 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439. |
Chen G W, Yuan Q. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 427-439. | |
3 | Hartman R L, McMullen J P, Jensen K F. Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis[J]. Angewandte Chemie International Edition, 2011, 50(33): 7502-7519. |
4 | 陈光文, 赵玉潮, 乐军, 等. 微化工过程中的传递现象[J]. 化工学报, 2013, 64(1): 63-75. |
Chen G W, Zhao Y C, Le J, et al. Transport phenomena in micro-chemical engineering[J]. CIESC Journal, 2013, 64(1): 63-75. | |
5 | Gutmann B, Cantillo D, Kappe C O. Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients[J]. Angewandte Chemie International Edition, 2015, 54(23): 6688-6728. |
6 | Gemoets H P L, Su Y H, Shang M J, et al. Liquid phase oxidation chemistry in continuous-flow microreactors[J]. Chemical Society Reviews, 2016, 45(1): 83-117. |
7 | Movsisyan M, Delbeke E I P, Berton J K E T, et al. Taming hazardous chemistry by continuous flow technology[J]. Chemical Society Reviews, 2016, 45(18): 4892-4928. |
8 | Plutschack M B, Pieber B, Gilmore K, et al. The hitchhiker’s guide to flow chemistry[J]. Chemical Reviews, 2017, 117(18): 11796-11893. |
9 | Capaldo L, Wen Z H, Noël T. A field guide to flow chemistry for synthetic organic chemists[J]. Chemical Science, 2023, 14(16): 4230-4247. |
10 | Baumann M, Moody T S, Smyth M, et al. A perspective on continuous flow chemistry in the pharmaceutical industry[J]. Organic Process Research & Development, 2020, 24(10): 1802-1813. |
11 | Koenig S G, Sneddon H F. Recent advances in flow chemistry in the pharmaceutical industry[J]. Green Chemistry, 2017, 19(6): 1418-1419. |
12 | Hughes D L. Applications of flow chemistry in the pharmaceutical industry—highlights of the recent patent literature[J]. Organic Process Research & Development, 2020, 24(10): 1850-1860. |
13 | Cambié D, Bottecchia C, Straathof N J W, et al. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment[J]. Chemical Reviews, 2016, 116(17): 10276-10341. |
14 | Morodo R, Riva R, van den Akker N M S, et al. Accelerating the end-to-end production of cyclic phosphate monomers with modular flow chemistry[J]. Chemical Science, 2022, 13(36): 10699-10706. |
15 | Besenhard M O, Pal S, Gkogkos G, et al. Non-fouling flow reactors for nanomaterial synthesis[J]. Reaction Chemistry & Engineering, 2023, 8(5): 955-977. |
16 | Ling Y, Lin C X, Zhou D, et al. Automated and intelligent chemical synthesis[J]. Scientia Sinica Chimica, 2023, 53(1): 48-65. |
17 | Chen J, Zheng X, Ruan Y X, et al. Autonomous high-throughput screening technology for accelerating drug molecule discovery and synthesis[J]. Scientia Sinica Chimica, 2023, 53(1): 79-94. |
18 | Baylon J L, Cilfone N A, Gulcher J R, et al. Enhancing retrosynthetic reaction prediction with deep learning using multiscale reaction classification[J]. Journal of Chemical Information and Modeling, 2019, 59(2): 673-688. |
19 | Coley C W, D A Ⅲ Thomas, Lummiss J A M, et al. A robotic platform for flow synthesis of organic compounds informed by AI planning[J]. Science, 2019, 365(6453): eaax1566. |
20 | Merk D, Grisoni F, Friedrich L, et al. Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators[J]. Communications Chemistry, 2018, 1: 68. |
21 | Schwaller P, Vaucher A C, Laplaza R, et al. Machine intelligence for chemical reaction space[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12(5): e1604. |
22 | Coley C W, Green W H, Jensen K F. Machine learning in computer-aided synthesis planning[J]. Accounts of Chemical Research, 2018, 51(5): 1281-1289. |
23 | Merrifield R B, Stewart J M, Jernberg N. Instrument for automated synthesis of peptides[J]. Analytical Chemistry, 1966, 38(13): 1905-1914. |
24 | Guo Z Y, Li Z X. Size effect on microscale single-phase flow and heat transfer[J]. International Journal of Heat and Mass Transfer, 2003, 46(1): 149-159. |
25 | Liu Y S, Al Hajri E. Mass and heat transfer characteristics of a single-high aspect ratio microchannel absorber[C]//ASME 2012 International Mechanical Engineering Congress and Exposition. Houston, Texas, USA, 2013: 1833-1846. |
26 | Cito S, Pallares J, Fabregat A, et al. Numerical simulation of wall mass transfer rates in capillary-driven flow in microchannels[J]. International Communications in Heat and Mass Transfer, 2012, 39(8): 1066-1072. |
27 | Kashid MN, Renken A, Kiwi-Minsker L. Influence of flow regime on mass transfer in different types of microchannels[J]. Industrial & Engineering Chemistry Research, 2011, 50(11): 6906-6914. |
28 | McMullen J P, Wyvratt B M. Automated optimization under dynamic flow conditions[J]. Reaction Chemistry & Engineering, 2023, 8(1): 137-151. |
29 | Hardwick T, Ahmed N. Digitising chemical synthesis in automated and robotic flow[J]. Chemical Science, 2020, 11(44): 11973-11988. |
30 | Bédard A C, Adamo A, Aroh K C, et al. Reconfigurable system for automated optimization of diverse chemical reactions[J]. Science, 2018, 361(6408): 1220-1225. |
31 | Liu C G, Xie J X, Wu W B, et al. Automated synthesis of prexasertib and derivatives enabled by continuous-flow solid-phase synthesis[J]. Nature Chemistry, 2021, 13(5): 451-457. |
32 | Mo Y M, Rughoobur G, Nambiar A M K, et al. A multifunctional microfluidic platform for high-throughput experimentation of electroorganic chemistry[J]. Angewandte Chemie International Edition, 2020, 59(47): 20890-20894. |
33 | Wang J Y, Stevens J M, Kariofillis S K, et al. Identifying general reaction conditions by bandit optimization[J]. Nature, 2024, 626(8001): 1025-1033. |
34 | Strieth-Kalthoff F, Hao H, Rathore V, et al. Delocalized, asynchronous, closed-loop discovery of organic laser emitters[J]. Science, 2024, 384(6697): eadk9227. |
35 | Slattery A, Wen Z H, Tenblad P, et al. Automated self-optimization, intensification, and scale-up of photocatalysis in flow[J]. Science, 2024, 383(6681): eadj1817. |
36 | Sim M, Vakili M G, Strieth-Kalthoff F, et al. ChemOS 2.0: an orchestration architecture for chemical self-driving laboratories[J]. Matter, 2024, 7(9): 2959-2977. |
37 | Tamura R, Tsuda K, Matsuda S. NIMS-OS: an automation software to implement a closed loop between artificial intelligence and robotic experiments in materials science[J]. Science and Technology of Advanced Materials: Methods, 2023, 3(1): 2232297. |
38 | Fakhruldeen H, Pizzuto G, Glowacki J, et al. ARChemist: autonomous robotic chemistry system architecture[C]//2022 International Conference on Robotics and Automation (ICRA). Philadelphia, PA, USA: IEEE, 2022: 6013-6019. |
39 | Epps R W, Felton K C, Coley C W, et al. Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing[J]. Lab on a Chip, 2017, 17(23): 4040-4047. |
40 | Coley C W, Abolhasani M, Lin H K, et al. Material-efficient microfluidic platform for exploratory studies of visible-light photoredox catalysis[J]. Angewandte Chemie, 2017, 129(33): 9979-9982. |
41 | Lo S, Baird S G, Schrier J, et al. Review of low-cost self-driving laboratories in chemistry and materials science: the “frugal twin” concept[J]. Digital Discovery, 2024, 3(5): 842-868. |
42 | Montaner M B, Penny M R, Hilton S T. Digitisation of a modular plug and play 3D printed continuous flow system for chemical synthesis[J]. Digital Discovery, 2023, 2(6): 1797-1805. |
43 | Wang W, Liu Y W, Wang Z, et al. The way to AI-controlled synthesis: how far do we need to go?[J]. Chemical Science, 2022, 13(43): 12604-12615. |
44 | Ahmadi F, Simchi M, Perry J M, et al. Integrating machine learning and digital microfluidics for screening experimental conditions[J]. Lab on a Chip, 2022, 23(1): 81-91. |
45 | Angelone D, Hammer A J S, Rohrbach S, et al. Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine[J]. Nature Chemistry, 2021, 13(1): 63-69. |
46 | Prabhu G R D, Yang T H, Hsu C Y, et al. Facilitating chemical and biochemical experiments with electronic microcontrollers and single-board computers[J]. Nature Protocols, 2020, 15(3): 925-990. |
47 | Steiner S, Wolf J, Glatzel S, et al. Organic synthesis in a modular robotic system driven by a chemical programming language[J]. Science, 2019, 363(6423): eaav2211. |
48 | Almada P, Pereira P M, Culley S, et al. Automating multimodal microscopy with NanoJ-Fluidics[J]. Nature Communications, 2019, 10: 1223. |
49 | Mijalis A J, D A Ⅲ Thomas, Simon M D, et al. A fully automated flow-based approach for accelerated peptide synthesis[J]. Nature Chemical Biology, 2017, 13(5): 464-466. |
50 | O'Brien M, Hall A, Schrauwen J, et al. An open-source approach to automation in organic synthesis: the flow chemical formation of benzamides using an inline liquid-liquid extraction system and a homemade 3-axis autosampling/product-collection device[J]. Tetrahedron, 2018, 74(25): 3152-3157. |
51 | Wong B G, Mancuso C P, Kiriakov S, et al. Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER[J]. Nature Biotechnology, 2018, 36(7): 614-623. |
52 | Fitzpatrick D E, O'Brien M, Ley S V. A tutored discourse on microcontrollers, single board computers and their applications to monitor and control chemical reactions[J]. Reaction Chemistry & Engineering, 2020, 5(2): 201-220. |
53 | Florian H, Teresa T-M, Carmen B, et al. Autonomous titration for chemistry classrooms: preparing students for digitized chemistry laboratories[J]. ChemRxiv, 2020.DOI:10.26434/chemrxiv.12097908.v1 |
54 | Pollina T, Larson A G, Lombard F, et al. PlanktonScope: affordable modular imaging platform for citizen oceanography[J]. bioRxiv, 2020. DOI:10.1101/2020.04.23.056978 . |
55 | Jaworski J N, Beingessner R L, Jamison T F. Automation of flow chemistry[M]//Flow Chemistry: Integrated Approaches for Practical Applications. London: The Royal Society of Chemistry, 2019: 461-484. |
56 | Sun A C, Steyer D J, Allen A R, et al. A droplet microfluidic platform for high-throughput photochemical reaction discovery[J]. Nature Communications, 2020, 11(1): 6202. |
57 | Haas C P, Roider T, Hoffmann R W, et al. Light as a reaction parameter—systematic wavelength screening in photochemical synthesis[J]. Reaction Chemistry & Engineering, 2019, 4(11): 1912-1916. |
58 | Wills A G, Charvet S, Battilocchio C, et al. High-throughput electrochemistry: state of the art, challenges, and perspective[J]. Organic Process Research & Development, 2021, 25(12): 2587-2600. |
59 | Wirth T, Amri N. Automated electrochemical selenenylations[J]. Synthesis, 2020, 52(12): 1751-1761. |
60 | Li T H, Liu L, Wei N, et al. An automated platform for the enzyme-mediated assembly of complex oligosaccharides[J]. Nature Chemistry, 2019, 11(3): 229-236. |
61 | Wen L Q, Edmunds G, Gibbons C, et al. Toward automated enzymatic synthesis of oligosaccharides[J]. Chemical Reviews, 2018, 118(17): 8151-8187. |
62 | Perera D, Tucker J W, Brahmbhatt S, et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow[J]. Science, 2018, 359(6374): 429-434. |
63 | Van Herck J, Abeysekera I, Buckinx A L, et al. Operator-independent high-throughput polymerization screening based on automated inline NMR and online SEC[J]. Digital Discovery, 2022, 1(4): 519-526. |
64 | Rubens M, Vrijsen J H, Laun J, et al. Precise polymer synthesis by autonomous self-optimizing flow reactors[J]. Angewandte Chemie International Edition, 2019, 58(10): 3183-3187. |
65 | Clayton A D, Pyzer-Knapp E O, Purdie M, et al. Bayesian self-optimization for telescoped continuous flow synthesis[J]. Angewandte Chemie International Edition, 2023, 62(3): e202214511. |
66 | Sagmeister P, Lebl R, Castillo I, et al. Advanced real-time process analytics for multistep synthesis in continuous flow[J]. Angewandte Chemie International Edition, 2021, 60(15): 8139-8148. |
67 | Yalamanchili S, Nguyen T A, Zsikla A, et al. Automated, multistep continuous-flow synthesis of 2,6-dideoxy and 3-amino-2,3,6-trideoxy monosaccharide building blocks[J]. Angewandte Chemie International Edition, 2021, 60(43): 23171-23175. |
68 | Morin M A, Zhang W P, Mallik D, et al. Sampling and analysis in flow: the keys to smarter, more controllable, and sustainable fine-chemical manufacturing[J]. Angewandte Chemie (International Ed. in English), 2021, 60(38): 20606-20626. |
69 | O'Neal E J, Jensen K F. Continuous nanofiltration and recycle of a metathesis catalyst in a microflow system[J]. ChemCatChem, 2014, 6(10): 3004-3011. |
70 | Collins N, Stout D, Lim J P, et al. Fully automated chemical synthesis: toward the universal synthesizer[J]. Organic Process Research & Development, 2020, 24(10): 2064-2077. |
71 | Lei Z X, Ang H T, Wu J. Advanced in-line purification technologies in multistep continuous flow pharmaceutical synthesis[J]. Organic Process Research & Development, 2024, 28(5): 1355-1368. |
72 | Han S Y, Ramezani M, TomHon P, et al. Intensified continuous extraction of switchable hydrophilicity solvents triggered by carbon dioxide[J]. Green Chemistry, 2021, 23(8): 2900-2906. |
73 | Abdiaj I, Cañellas S, Dieguez A, et al. End-to-end automated synthesis of C(sp3)-enriched drug-like molecules via negishi coupling and novel, automated liquid-liquid extraction[J]. Journal of Medicinal Chemistry, 2023, 66(1): 716-732. |
74 | Pal S, Pankajakshan A, Besenhard M O, et al. Automated continuous crystallization platform with real-time particle size analysis via laser diffraction[J]. Organic Process Research & Development, 2024, 28(7): 2755-2764. |
75 | Nandiwale K Y, Pritchard R P, Armstrong C T, et al. Automated self-optimization of continuous crystallization of nirmatrelvir API[J]. Reaction Chemistry & Engineering, 2024, 9(9): 2460-2468. |
76 | Mascia S, Heider P L, Zhang H T, et al. End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation[J]. Angewandte Chemie (International Ed. in English), 2013, 52(47): 12359-12363. |
77 | Thomson C G, Banks C, Allen M, et al. Expanding the tool kit of automated flow synthesis: development of in-line flash chromatography purification[J]. The Journal of Organic Chemistry, 2021, 86(20): 14079-14094. |
78 | Goodell J R, McMullen J P, Zaborenko N, et al. Development of an automated microfluidic reaction platform for multidimensional screening: reaction discovery employing bicyclo[3.2.1]octanoid scaffolds[J]. The Journal of Organic Chemistry, 2009, 74(16): 6169-6180. |
79 | Sun A C, Steyer D J, Robinson R I, et al. High-throughput optimization of photochemical reactions using segmented-flow nanoelectrospray-ionization mass spectrometry[J]. Angewandte Chemie International Edition, 2023, 62(28): e202301664. |
80 | Rial-Rodríguez E, Williams J D, Cantillo D, et al. An automated electrochemical flow platform to accelerate library synthesis and reaction optimization[J]. ChemRxiv, 2024. DOI:10.26434/chemrxiv-2024-dm4zj-v2 . |
81 | Hartrampf N, Saebi A, Poskus M, et al. Synthesis of proteins by automated flow chemistry[J]. Science, 2020, 368(6494): 980-987. |
82 | Li C X, Callahan A J, Simon M D, et al. Fully automated fast-flow synthesis of antisense phosphorodiamidate morpholino oligomers[J]. Nature Communications, 2021, 12(1): 4396. |
83 | Chatterjee S, Guidi M, Seeberger P H, et al. Automated radial synthesis of organic molecules[J]. Nature, 2020, 579(7799): 379-384. |
84 | Lendrem D W, Lendrem B C, Woods D, et al. Lost in space: design of experiments and scientific exploration in a Hogarth universe[J]. Drug Discovery Today, 2015, 20(11): 1365-1371. |
85 | Taylor C J, Pomberger A, Felton K C, et al. A brief introduction to chemical reaction optimization[J]. Chemical Reviews, 2023, 123(6): 3089-3126. |
86 | I J O. The design of experiments[J]. Nature, 1936, 137(3459): 252-254. |
87 | Bogdan A, Sach N. The use of copper flow reactor technology for the continuous synthesis of 1,4-disubstituted 1,2,3-triazoles[J]. Advanced Synthesis & Catalysis, 2009, 351(6): 849-854. |
88 | Bogdan A R, Wang Y. A high-throughput synthesis of 1,2,4-oxadiazole and 1,2,4-triazole libraries in a continuous flow reactor[J]. RSC Advances, 2015, 5(97): 79264-79269. |
89 | Charaschanya M, Bogdan A R, Wang Y, et al. Nucleophilic aromatic substitution of heterocycles using a high-temperature and high-pressure flow reactor[J]. Tetrahedron Letters, 2016, 57(9): 1035-1039. |
90 | Tsoung J, Bogdan A R, Kantor S, et al. Synthesis of fused pyrimidinone and quinolone derivatives in an automated high-temperature and high-pressure flow reactor[J]. The Journal of Organic Chemistry, 2017, 82(2): 1073-1084. |
91 | Nelder J A, Mead R. A simplex method for function minimization[J]. The Computer Journal, 1965, 7(4): 308-313. |
92 | Fath V, Kockmann N, Otto J, et al. Self-optimising processes and real-time-optimisation of organic syntheses in a microreactor system using Nelder-Mead and design of experiments[J]. Reaction Chemistry & Engineering, 2020, 5(7): 1281-1299. |
93 | Huyer W, Neumaier A. SNOBFIT: stable noisy optimization by branch and fit[J]. ACM Transactions on Mathematical Software, 2008, 35(2): 1-25. |
94 | Holmes N, Akien G R, Savage R J D, et al. Online quantitative mass spectrometry for the rapid adaptive optimisation of automated flow reactors[J]. Reaction Chemistry & Engineering, 2016, 1(1): 96-100. |
95 | Knoll S, Jusner C E, Sagmeister P, et al. Autonomous model-based experimental design for rapid reaction development[J]. Reaction Chemistry & Engineering, 2022, 7(11): 2375-2384. |
96 | Häse F, Aldeghi M, Hickman R J, et al. Olympus: a benchmarking framework for noisy optimization and experiment planning[J]. Machine Learning: Science and Technology, 2021, 2(3): 035021. |
97 | Ahneman D T, Estrada J G, Lin S S, et al. Predicting reaction performance in C—N cross-coupling using machine learning[J]. Science, 2018, 360(6385): 186-190. |
98 | Kuleshov V, Precup D. Algorithms for multi-armed bandit problems[J]. arXiv e-Prints, 2014. DOI:10.48550/arXiv. 1402.6028 . |
99 | Mockus J. Application of Bayesian approach to numerical methods of global and stochastic optimization[J]. Journal of Global Optimization, 1994, 4(4): 347-365. |
100 | Nambiar A M K, Breen C P, Hart T, et al. Bayesian optimization of computer-proposed multistep synthetic routes on an automated robotic flow platform[J]. ACS Central Science, 2022, 8(6): 825-836. |
101 | Karan D, Chen G Y, Jose N, et al. A machine learning-enabled process optimization of ultra-fast flow chemistry with multiple reaction metrics[J]. Reaction Chemistry & Engineering, 2024, 9(3): 619-629. |
102 | Taylor C J, Felton K C, Wigh D, et al. Accelerated chemical reaction optimization using multi-task learning[J]. ACS Central Science, 2023, 9(5): 957-968. |
103 | Wołos A, Koszelewski D, Roszak R, et al. Computer-designed repurposing of chemical wastes into drugs[J]. Nature, 2022, 604(7907): 668-676. |
104 | Achiam J, Adler S, Agarwal S, et al. Gpt-4 technical report[J]. arXiv e-Prints, 2023. DOI:10.48550/arXiv.2303.08774 . |
105 | Guo T, Nan B, Liang Z, et al. What can large language models do in chemistry? A comprehensive benchmark on eight tasks[J]. Advances in Neural Information Processing Systems, 2023, 36: 59662-59688. |
106 | Boiko D A, MacKnight R, Kline B, et al. Autonomous chemical research with large language models[J]. Nature, 2023, 624(7992): 570-578. |
107 | Bran A M, Cox S, Schilter O, et al. Augmenting large language models with chemistry tools[J]. Nature Machine Intelligence, 2024, 6(5): 525-535. |
108 | Leslie M. Coming soon: the first university-based cloud lab[J]. Engineering, 2023, 20: 3-5. |
109 | Arnold C. Cloud labs: where robots do the research[J]. Nature, 2022, 606(7914): 612-613. |
110 | Li J G, Li J Z, Liu R L, et al. Autonomous discovery of optically active chiral inorganic perovskite nanocrystals through an intelligent cloud lab[J]. Nature Communications, 2020, 11(1): 2046. |
111 | Fitzpatrick D E, Maujean T, Evans A C, et al. Across-the-world automated optimization and continuous-flow synthesis of pharmaceutical agents operating through a cloud-based server[J]. Angewandte Chemie International Edition, 2018, 57(46): 15128-15132. |
[1] | Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation [J]. CIESC Journal, 2024, 75(4): 1370-1381. |
[2] | Mengqi LIU, Kai WANG, Guangsheng LUO. Fundamental research on microdispersion based on artificial intelligence [J]. CIESC Journal, 2024, 75(4): 1096-1104. |
[3] | Zheng ZHANG, Wuqiong WANG, Yajing ZHANG, Kangjun WANG, Yuanhui JI. Research progress in theoretical calculation of pharmaceutical formulation design [J]. CIESC Journal, 2024, 75(4): 1429-1438. |
[4] | Dongfei LIU, Fan ZHANG, Zheng LIU, Diannan LU. A review of machine learning potentials and their applications to molecular simulation [J]. CIESC Journal, 2024, 75(4): 1241-1255. |
[5] | Yuxiang CHEN, Chuanlei LIU, Zijun GONG, Qiyue ZHAO, Guanchu GUO, Hao JIANG, Hui SUN, Benxian SHEN. Machine learning-assisted solvent molecule design for efficient absorption of ethanethiol [J]. CIESC Journal, 2024, 75(3): 914-923. |
[6] | Yujiao ZENG, Xin XIAO, Gang YANG, Yibo ZHANG, Guangming ZHENG, Fang LI, Fengling WANG. Surrogate modeling and optimization of wet phosphoric acid production process based on mechanism and data hybrid driven [J]. CIESC Journal, 2024, 75(3): 936-944. |
[7] | Yewei DING, Wenbo KANG, Yutong SONG, Qinxi FAN, Yuanhui JI. Mechanism and screening of indomethacin self-assembled nanomedical drugs [J]. CIESC Journal, 2024, 75(11): 4141-4151. |
[8] | Gen LIU, Zhongshun SUN, Bo ZHANG, Rongjiang ZHANG, Zhiqiang WU, Bolun YANG. Establishment of machine learning-driven biomass pyrolysis model and optimization of volatiles chemical looping reforming hydrogen production process [J]. CIESC Journal, 2024, 75(11): 4333-4347. |
[9] | Maoxian WANG, Qidian SUN, Zhe FU, Fang HUA, Ye JI, Yi CHENG. Understanding pyrolysis process of polyethylene by combined method of molecular-level kinetic model with machine learning [J]. CIESC Journal, 2024, 75(11): 4320-4332. |
[10] | Zhengya DONG, Xiaojing ZHU, Jingfu JIA, Jie ZHANG, Zhuotao ZHENG, Xiaolin LIU, Zhilin WU. Scale-up of ultrasonic microreactor systems and their applications in the preparation of nanomaterials [J]. CIESC Journal, 2024, 75(11): 4095-4119. |
[11] | Yuting ZHENG, Guandong FANG, Mengbo ZHANG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on micro-chemical rectification and separation technology [J]. CIESC Journal, 2024, 75(1): 47-59. |
[12] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[13] | Mengbo ZHANG, Linjin LOU, Yirong FENG, Yuting ZHENG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on synthesis of alkylaluminoxanes [J]. CIESC Journal, 2023, 74(2): 525-534. |
[14] | Tianhang ZHOU, Xingying LAN, Chunming XU. Artificial intelligence for accelerating polymer design: recent advances and future perspectives [J]. CIESC Journal, 2023, 74(1): 14-28. |
[15] | Jiahui REN, Yu LIU, Chao LIU, Lang LIU, Ying LI. Critical temperature prediction of working fluids using molecular fingerprints and topological indices [J]. CIESC Journal, 2022, 73(4): 1493-1500. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 265
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 304
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||