CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5290-5299.DOI: 10.11949/0438-1157.20250356

• Energy and environmental engineering • Previous Articles     Next Articles

Fabrication of PVDF/LFTCO (LaFe0.55Ti0.2Co0.25O3) catalytic membrane for photo-Fenton-like degradation of tetracycline hydrochloride

Shuang HAN(), Qiuyue WANG, Ze-Xian LOW(), Zhaoxiang ZHONG, Weihong XING()   

  1. National Engineering Research Center for Special Separation Membrane, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
  • Received:2025-04-08 Revised:2025-05-31 Online:2025-11-25 Published:2025-10-25
  • Contact: Ze-Xian LOW, Weihong XING

PVDF/LFTCO(LaFe0.55Ti0.2Co0.25O3)催化膜类光芬顿降解盐酸四环素

韩霜(), 王秋月, 刘泽贤(), 仲兆祥, 邢卫红()   

  1. 南京工业大学化工学院,国家特种分离膜工程技术研究中心,江苏 南京 211816
  • 通讯作者: 刘泽贤,邢卫红
  • 作者简介:韩霜(2001—),女,硕士研究生,hans@njtech.edu.cn

Abstract:

Antibiotics are widely used in the medical field to treat infectious diseases. However, their high polarity and low volatility physical and chemical properties lead to a large amount of drug residues in wastewater, which in turn triggers a cascade effect of environmental-ecological-health risks, making bacteria resistant and destroying aquatic ecosystems. Consequently, the efficient removal of antibiotic residues from wastewater has become a critical environmental priority. Photocatalytic and photo-Fenton technologies have emerged as promising approaches for degrading antibiotic contaminants. However, existing methodologies are constrained by suboptimal catalyst recovery and limited photoreactor energy utilization, which restrict scalability from laboratory research to industrial implementation. To address these limitations, a PVDF/LFTCO (LaFe0.55Ti0.2Co0.25O3) catalytic membrane was developed through an in-situ functional layer design. The membrane facilitates photocatalytic and Fenton-like activation for the degradation of tetracycline hydrochloride. Under the synergistically coupled mechanism of photocatalysis and Fenton-like oxidation, catalysts undergo photoexcitation to generate photogenerated electron-hole pairs, which facilitate the efficient activation of H2O2 through charge separation and transfer processes coupled with redox cycling, subsequently generating reactive oxygen species. Consequently, the PVDF/LFTCO catalytic membrane exhibits stable and efficient degradation of tetracycline hydrochloride with a removal efficiency of 87.78% in a continuous-flow system, maintaining this performance within 90 min. After photo-Fenton-like regeneration, the degradation rate of tetracycline hydrochloride by the PVDF/LFTCO catalytic membrane after five cycles of reuse remains at 73.50%, providing an innovative solution for the construction of efficient wastewater treatment membranes.

Key words: perovskite, catalytic membrane, continuous flow, catalytic degradation, tetracycline hydrochloride

摘要:

医疗领域广泛使用抗生素治疗感染性疾病,然而其高极性、低挥发性的理化特性导致废水中大量药物残留,进而引发环境-生态-健康的风险级联效应,使得细菌具有耐药性的同时破坏水生生态系统。因此,高效处理废水中残存的抗生素十分必要。光催化与光芬顿技术是降解废水中残存抗生素的有效手段,然而现有光催化与光芬顿技术催化剂回收机制不完善、反应器光能利用效率低下,严重阻碍该技术从实验室向工业规模转化。为解决上述问题,本工作通过功能层原位设计,成功制备了PVDF/LFTCO (LaFe0.55Ti0.2Co0.25O3)催化膜,在光催化与类芬顿氧化协同耦合机制下,催化剂经由光致激发产生光生电子-空穴对,通过电荷分离和转移过程以及氧化还原循环反应,高效激活H2O2并生成活性自由基,PVDF/LFTCO催化膜在连续流装置中可稳定高效降解87.78%的盐酸四环素并在90 min内维持该性能。类光芬顿再生后,PVDF/LFTCO催化膜经过五次循环重复使用对盐酸四环素的降解率保持在73.50%,为构建高效废水处理膜提供了创新性解决方案。

关键词: 钙钛矿, 催化膜, 连续流, 催化降解, 盐酸四环素

CLC Number: