1 |
安思源, 朱晶莹, 卢滇楠, 等. 酶催化合成高分子量聚丁二酸丁二醇酯(PBS)及其材料特性[J]. 化工学报, 2013, 64(5): 1855-1861.
|
|
An S Y, Zhu J Y, Lu D N, et al. Lipase-catalyzed synthesis and characterization of high-molecular-weight PBS[J]. CIESC Journal, 2013, 64(5): 1855-1861.
|
2 |
Cukalovic A, Stevens C V. Feasibility of production methods for succinic acid derivatives: a marriage of renewable resources and chemical technology[J]. Biofuels, Bioproducts and Biorefining, 2008, 2(6): 505-529.
|
3 |
陈建兵, 廖克俭, 佟明友, 等. 顺酐加氢制备丁二酸酐的研究[J]. 石油化工高等学校学报, 2010, 23(4): 29-32.
|
|
Chen J B, Liao K J, Tong M Y, et al. Maleic anhydride hydrogenated to succinic anhydride[J]. Journal of Petrochemical Universities, 2010, 23(4): 29-32.
|
4 |
钟驭涛, 尚长宇, 王言东, 等. 利用酵母细胞工厂合成丁二酸的研究进展[J]. 生物工程学报, 2024, 40(8): 2644-2665.
|
|
Zhong Y T, Shang C Y, Wang Y D, et al. Advances in synthesis of succinic acid using yeast cell factories[J]. Chinese Journal of Biotechnology, 2024, 40(8): 2644-2665.
|
5 |
Pallassana V, Neurock M. First-principles periodic density functional study of the hydrogenation of maleic anhydride to succinic anhydride over palladium(111)[J]. The Journal of Physical Chemistry B, 2000, 104(40): 9449-9459.
|
6 |
Wang C L, Zhang Y, Li H T, et al. Ni@C nanocatalysts for the highly efficient hydrogenation of maleic anhydride to γ-butyrolactone[J]. Molecular Catalysis, 2024, 556: 113866.
|
7 |
房畅, 吕清林, 韩冰, 等. 顺酐加氢催化剂的研究进展[J]. 石油化工, 2023, 52(5): 720-727.
|
|
Fang C, Lyu Q L, Han B, et al. Research progress of maleic anhydride hydrogenation catalyst[J]. Petrochemical Technology, 2023, 52(5): 720-727.
|
8 |
黄国强. 负载型镍基催化剂的制备及加氢性能研究[D]. 西安: 西安石油大学, 2021.
|
|
Huang G Q. Preparation and hydrogenation performance of supported nickel-based catalyst[D]. Xi'an: Xi'an Shiyou University, 2021.
|
9 |
Chen M R, Meng X, Liu N W, et al. Low supported nickel-cobalt catalyst for hydrogenation of maleic anhydride[J]. Fuel, 2023, 331: 125520.
|
10 |
梁旭, 李丰, 魏灵朝, 等. 顺酐加氢连续生产丁二酸酐中试工艺研究[J]. 化学与生物工程, 2018, 35(10): 56-59.
|
|
Liang X, Li F, Wei L C, et al. Pilot process of continuous production of succinic anhydride by hydrogenation of maleic anhydride[J]. Chemistry & Bioengineering, 2018, 35(10): 56-59.
|
11 |
Cai J X, Zhu J X, Zuo L, et al. Effect of surface acidity/basicity on the selective hydrogenation of maleic anhydride to succinic anhydride over supported nickel catalysts[J]. Catalysis Communications, 2018, 110: 93-96.
|
12 |
Zhao Y X, Qin X Q, Hou X C, et al. Preparation, characterization and properties of selective hydrogenation on Ni-based catalysts[J]. Acta Physico-Chimica Sinica, 2003, 19(5): 450-454.
|
13 |
Tian F P, Zhang M J, Zhang X C, et al. Porous carbon-encapsulated Ni nanocatalysts for selective catalytic hydrogenation of cinnamaldehyde to hydrocinnamaldehyde[J]. Journal of Materials Science, 2022, 57(5): 3168-3182.
|
14 |
Zhou Y F, Chen Q L, Wang Q, et al. Selective hydrogenation of maleic anhydride to succinic anhydride over nickel catalyst supported on carbon microspheres[J]. China Petroleum Processing & Petrochemical Technology, 2021, 23(4): 75-82.
|
15 |
Wang Y, Sang S Y, Zhu W, et al. CuNi@C catalysts with high activity derived from metal-organic frameworks precursor for conversion of furfural to cyclopentanone[J]. Chemical Engineering Journal, 2016, 299: 104-111.
|
16 |
姚雅琪. 凝聚相脂肪酸酯加氢铜基催化剂的制备与调控[D]. 天津: 天津大学, 2020.
|
|
Yao Y Q. Preparation and regulation of copper-based catalyst for hydrogenation of fatty acid esters in condensed phase[D]. Tianjin: Tianjin University, 2020.
|
17 |
曹萌. 草酸酯加氢制乙醇负载型铁基催化剂的研究[D]. 天津: 天津大学, 2022.
|
|
Cao M. Study on supported iron-based catalyst for hydrogenation of oxalate to ethanol[D]. Tianjin: Tianjin University, 2022.
|
18 |
杨文龙, 赵玉军, 王胜平, 等. 铜硅催化剂中层状硅酸铜的形成过程[J]. 化学工业与工程, 2016, 33(1): 1-5.
|
|
Yang W L, Zhao Y J, Wang S P, et al. Formation of copper phyllosilicate in silica supported copper catalyst[J]. Chemical Industry and Engineering, 2016, 33(1): 1-5.
|
19 |
Tan J J, Xia X L, Cui J L, et al. Efficient tuning of surface nickel species of the Ni-phyllosilicate catalyst for the hydrogenation of maleic anhydride[J]. The Journal of Physical Chemistry C, 2019, 123(15): 9779-9787.
|
20 |
Sheng Q, Wang Y Y, Zhang P F, et al. Highly dispersed Ni on defective carbon with metal-support interaction for efficient and selective cinnamaldehyde hydrogenation[J]. Applied Surface Science, 2024, 666: 160369.
|
21 |
Campisi S, Chan-Thaw C E, Villa A. Understanding heteroatom-mediated metal-support interactions in functionalized carbons: a perspective review[J]. Applied Sciences, 2018, 8(7): 1159.
|
22 |
Zhuang J G, Yan S Y, Zhang P, et al. Regulating the states of Ni species by controlling the silanols of MCM-41 support to promote the hydrogenation of maleic anhydride[J]. Fuel, 2023, 335: 127030.
|
23 |
张因, 赵丽丽, 张鸿喜, 等. 载体对镍基催化剂顺酐液相加氢性能的影响[J]. 化工学报, 2015, 66(7): 2505-2513.
|
|
Zhang Y, Zhao L L, Zhang H X, et al. Effect of support on catalytic performance of nickel-based catalysts used for liquid phase hydrogenation of maleic anhydride[J]. CIESC Journal, 2015, 66(7): 2505-2513.
|
24 |
Li P F, Huang H J, Wang Z, et al. Reductive amination of n-hexanol to n-hexylamine over Ni-Ce/γ-Al2O3 catalysts[J]. Frontiers of Chemical Science and Engineering, 2023, 17(1): 82-92.
|
25 |
Feng Y H, Yin H B, Wang A L, et al. Selective hydrogenation of maleic anhydride to succinic anhydride catalyzed by metallic nickel catalysts[J]. Applied Catalysis A: General, 2012, 425: 205-212.
|
26 |
Regenhardt S A, Meyer C I, Garetto T F, et al. Selective gas phase hydrogenation of maleic anhydride over Ni-supported catalysts: effect of support on the catalytic performance[J]. Applied Catalysis A: General, 2012, 449: 81-87.
|
27 |
Choy J H, Yoon J B, Jung H, et al. Structural evolution of SiO2-ZrO2 nano-sol intercalated clays upon pillaring reaction[J]. Journal of Materials Chemistry, 2003, 13(3): 557-562.
|
28 |
Baldovino-Medrano V G, Niño-Celis V, Isaacs Giraldo R. Systematic analysis of the nitrogen adsorption-desorption isotherms recorded for a series of materials based on microporous-mesoporous amorphous aluminosilicates using classical methods[J]. Journal of Chemical & Engineering Data, 2023, 68(9): 2512-2528.
|
29 |
Meyer C I, Regenhardt S A, Bertone M E, et al. Gas-phase maleic anhydride hydrogenation over Ni/SiO2-Al2O3 catalysts: effect of metal loading[J]. Catalysis Letters, 2013, 143(10): 1067-1073.
|
30 |
Molina-Sabio M, Rodrı́guez-Reinoso F. Role of chemical activation in the development of carbon porosity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241(1/2/3): 15-25.
|
31 |
Gao B Y, Huang H J, Rehman M U, et al. Amination of n-hexanol to n-hexylamine over Ru-Ni bimetallic catalyst [J]. Journal of Chemical Technology & Biotechnology, 2024. doi: 10.1002/jctb.7751 .
|
32 |
Pham-Huu C, Ledoux M J. Carbon nanomaterials with controlled macroscopic shapes as new catalytic materials[J]. Topics in Catalysis, 2006, 40(1): 49-63.
|
33 |
Fúnez A, De Lucas A, Sánchez P, et al. Hydroisomerization in liquid phase of a refinery naphtha stream over Pt-Ni/H-beta zeolite catalysts[J]. Chemical Engineering Journal, 2008, 136(2/3): 267-275.
|
34 |
Byun M Y, Lee M S. Pt supported on hierarchical porous carbon for furfural hydrogenation[J]. Journal of Industrial and Engineering Chemistry, 2021, 104: 406-415.
|
35 |
Fu Y, Devred F, Eloy P, et al. The effect of Ni particle size and carbon support on catalytic activity for glucose hydrogenation reaction[J]. Applied Catalysis A: General, 2022, 644: 118833.
|
36 |
Dasari M A, Kiatsimkul P P, Sutterlin W R, et al. Low-pressure hydrogenolysis of glycerol to propylene glycol[J]. Applied Catalysis A: General, 2005, 281(1/2): 225-231.
|
37 |
李波, 鲍世宁, 曹培林. 乙烯和乙炔基在Ni(110)表面上吸附结构的研究[J]. 物理学报, 2005, 54(12): 5784.
|
|
Li B, Bao S N, Cao P L. Adsorption geometry of C2H4 and C2H on Ni(110) surface[J]. Acta Physica Sinica, 2005, 54(12): 5784.
|
38 |
Li B, Bao S N, Zhuang Y Y, et al. The adsorption geometry of ethylene on the Ni (110) surface[J]. Acta Physica Sinica, 2003, 52(1): 202.
|
39 |
Lv S S, Liu X J, Shen X J. A simulated-TPD study of H2 desorption on metal surfaces[J]. Surface Science, 2022, 718: 122015.
|
40 |
Lueking A D, Yang R T. Hydrogen spillover to enhance hydrogen storage—study of the effect of carbon physicochemical properties[J]. Applied Catalysis A: General, 2004, 265(2): 259-268.
|
41 |
Zea H, Lester K, Datye A K, et al. The influence of Pd-Ag catalyst restructuring on the activation energy for ethylene hydrogenation in ethylene-acetylene mixtures[J]. Applied Catalysis A: General, 2005, 282(1/2): 237-245.
|
42 |
Neurock M, Pallassana V, van Santen R A. The importance of transient states at higher coverages in catalytic reactions[J]. Journal of the American Chemical Society, 2000, 122(6): 1150-1153.
|
43 |
Filhol J S, Simon D, Sautet P. Ethylene adsorption and coadsorption with H on Pd(110) from first principles[J]. The Journal of Physical Chemistry B, 2003, 107(7): 1604-1615.
|
44 |
Tan Y C, Abu Bakar N H H, Tan W L, et al. Hydrogenation of liquid styrene by alumina supported nickel catalysts: comparison between classical and non-classical methods[J]. IOP Conference Series: Materials Science and Engineering, 2016, 133: 012017.
|
45 |
Chen S, Miao C X, Luo Y, et al. Study of catalytic hydrodeoxygenation performance of Ni catalysts: effects of prepared method[J]. Renewable Energy, 2018, 115: 1109-1117.
|