CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6277-6288.DOI: 10.11949/0438-1157.20250492
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Bo ZHANG1(
), Hongrui LI1, Lu WANG1, Zhen LI1,2(
)
Received:2025-05-06
Revised:2025-09-26
Online:2026-01-23
Published:2025-12-31
Contact:
Zhen LI
通讯作者:
李震
作者简介:张博(1996—),男,博士研究生,b-zhang21@mails.tsinghua.edu.cn
基金资助:CLC Number:
Bo ZHANG, Hongrui LI, Lu WANG, Zhen LI. Research on the flow and heat transfer characteristics of single-phase immersion coolants and liquid cooling system[J]. CIESC Journal, 2025, 76(12): 6277-6288.
张博, 李弘锐, 王露, 李震. 单相浸没冷却液及液冷系统的流动换热特性研究[J]. 化工学报, 2025, 76(12): 6277-6288.
Add to citation manager EndNote|Ris|BibTeX
Fig.14 Thermal conductive grease placed in air (a), silicone oil (b), mineral oil (c) and thermal conductive pads placed in air (d), silicone oil (e), mineral oil (f)
| [1] | Masanet E, Shehabi A, Lei N A, et al. Recalibrating global data center energy-use estimates[J]. Science, 2020, 367(6481): 984-986. |
| [2] | Liu Y N, Wei X X, Xiao J Y, et al. Energy consumption and emission mitigation prediction based on data center traffic and PUE for global data centers[J]. Global Energy Interconnection, 2020, 3(3): 272-282. |
| [3] | Khattak Z, Ali H M. Air cooled heat sink geometries subjected to forced flow: a critical review[J]. International Journal of Heat and Mass Transfer, 2019, 130: 141-161. |
| [4] | Wu Z J, Zhang G Y, Lu S A, et al. A comprehensive review of cold plate liquid cooling technology for data centers[J]. Chemical Engineering Science, 2025, 310: 121525. |
| [5] | Zheng S, Su C S, Yang X P, et al. A comprehensive review of single-phase immersion cooling in data centres[J]. Applied Thermal Engineering, 2025, 272: 126385. |
| [6] | Zhang C, Wang H, Huang Y, et al. Immersion liquid cooling for electronics: materials, systems, applications and prospects[J]. Renewable and Sustainable Energy Reviews, 2025, 208: 114989. |
| [7] | Bansode P, Suthar R, Bhandari R, et al. Impact of immersion cooling on thermomechanical properties of halogen-free substrate core[J]. Journal of Electronic Packaging, 2024, 146(4): 041112. |
| [8] | Beau V V, Marion K, Pieter S. Performance evaluation of a next generation ester based dielectric for single-phase precision immersion cooling[C]//2024 IEEE 5th International Conference on Dielectrics (ICD). IEEE, 2024: 1-6. |
| [9] | Chauhan T, Bhandari R, Sivaraju K B, et al. Impact of immersion cooling on thermomechanical properties of low-loss material printed circuit boards[J]. Journal of Enhanced Heat Transfer, 2021, 28(7): 73-90. |
| [10] | Luo Q Y, Wang C H, Wen H P, et al. Research and optimization of thermophysical properties of sic oil-based nanofluids for data center immersion cooling[J]. International Communications in Heat and Mass Transfer, 2022, 131: 105863. |
| [11] | Shah J M, Padmanaban K, Singh H, et al. Evaluating the reliability of passive server components for single-phase immersion cooling[J]. Journal of Electronic Packaging, 2022, 144(2): 021109. |
| [12] | Shah J M, Eiland R, Rajmane P, et al. Reliability considerations for oil immersion-cooled data centers[J]. Journal of Electronic Packaging, 2019, 141(2): 021007. |
| [13] | Shinde P A, Bansode P V, Saini S, et al. Experimental analysis for optimization of thermal performance of a server in single phase immersion cooling[C]//ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. Anaheim, California, USA: American Society of Mechanical Engineers, 2019: 1-8. |
| [14] | Eiland R, Edward Fernandes J, Vallejo M, et al. Thermal performance and efficiency of a mineral oil immersed server over varied environmental operating conditions[J]. Journal of Electronic Packaging, 2017, 139(4): 041005. |
| [15] | Chhetri A, Kashyap D, Mali A, et al. Numerical simulation of the single-phase immersion cooling process using a dielectric fluid in a data server[J]. Materials Today: Proceedings, 2022, 51: 1532-1538. |
| [16] | Shrigondekar H, Lin Y C, Wang C-C. Investigations on performance of single-phase immersion cooling system[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123961. |
| [17] | Chen X, Huang Y P, Xu S J, et al. Thermal performance evaluation of electronic fluorinated liquids for single-phase immersion liquid cooling[J]. International Journal of Heat and Mass Transfer, 2024, 220: 124951. |
| [18] | Wang H J, Yuan X J, Zhang K, et al. Performance evaluation and optimization of data center servers using single-phase immersion cooling[J]. International Journal of Heat and Mass Transfer, 2024, 221: 125057. |
| [19] | Hnayno M, Chehade A, Klaba H, et al. Experimental investigation of a data-centre cooling system using a new single-phase immersion/liquid technique[J]. Case Studies in Thermal Engineering, 2023, 45: 102925. |
| [20] | Kim J, Choi H, Lee S, et al. Computational study of single-phase immersion cooling for high-energy density server rack for data centers[J]. Applied Thermal Engineering, 2025, 264: 125476. |
| [21] | Zhang Y Y, Wang Y, Kosonen R, et al. Numerical research on the flow and heat transfer characteristics in the immersion jet cooling for servers[J]. Case Studies in Thermal Engineering, 2024, 60: 104748. |
| [22] | Huang Y P, Ge J L, Chen Y P, et al. Natural and forced convection heat transfer characteristics of single-phase immersion cooling systems for data centers[J]. International Journal of Heat and Mass Transfer, 2023, 207: 124023. |
| [23] | Zhang Y D, Lin Y C, Wang C C. Investigation of the single-phase immersion cold plate amid PAO-4 and Noah@3000A—an experimental approach and its numerical verification[J]. International Communications in Heat and Mass Transfer, 2024, 155: 107509. |
| [24] | Taddeo P, Romaní J, Summers J, et al. Experimental and numerical analysis of the thermal behaviour of a single-phase immersion-cooled data centre[J]. Applied Thermal Engineering, 2023, 234: 121260. |
| [25] | Liu Z, Sun X S, Ji S R, et al. A multi-objective optimization of a single-phase immersion cooling system at cabinet level[J]. Energy and Buildings, 2024, 312: 114221. |
| [26] | Kanbur B B, Wu C L, Fan S M, et al. System-level experimental investigations of the direct immersion cooling data center units with thermodynamic and thermoeconomic assessments[J]. Energy, 2021, 217: 119373. |
| [27] | Sun X S, Liu Z, Ji S R, et al. Experimental study on thermal performance of a single-phase immersion cooling unit for high-density computing power data center[J]. International Journal of Heat and Fluid Flow, 2025, 112: 109735. |
| [28] | Liu S C, Xu Z M, Wang Z M, et al. Optimization and comprehensive evaluation of liquid cooling tank for single-phase immersion cooling data center[J]. Applied Thermal Engineering, 2024, 245: 122864. |
| [29] | Li X Q, Guo S T, Sun H W, et al. Experimental study of the performance of liquid cooling tank used for single-phase immersion cooling data center[J]. Case Studies in Thermal Engineering, 2024, 63: 105386. |
| [30] | Lionello M, Rampazzo M, Beghi A, et al. Graph-based modelling and simulation of liquid immersion cooling systems[J]. Energy, 2020, 207: 118238. |
| [31] | Culham J R, Muzychka Y S. Optimization of plate fin heat sinks using entropy generation minimization[J]. IEEE Transactions on Components and Packaging Technologies, 2001, 24(2): 159-165. |
| [32] | Ferrouillat S, Bontemps A, Ribeiro J P, et al. Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions[J]. International Journal of Heat and Fluid Flow, 2011, 32(2): 424-439. |
| [33] | Ehrenpreis C, El Bahi H, Xu H H, et al. Physically-motivated Figure of Merit (FOM) assessing the cooling performance of fluids suitable for the direct cooling of electrical components[C]//2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2020: 422-429. |
| [34] | Muneeshwaran M, Lin Y C, Wang C-C. Performance analysis of single-phase immersion cooling system of data center using FC-40 dielectric fluid[J]. International Communications in Heat and Mass Transfer, 2023, 145: 106843. |
| [1] | Hongxin YU, Ningbo WANG, Yanhua GUO, Shuangquan SHAO. Numerical investigation on the flow and heat transfer characteristics of plate heat exchanger in dynamic ice storage system [J]. CIESC Journal, 2025, 76(S1): 106-113. |
| [2] | Songyuan GUO, Xiaoqing ZHOU, Wubing MIAO, Bin WANG, Rui ZHUAN, Qingtai CAO, Chengcheng CHEN, Guang YANG, Jingyi WU. Numerical study on characteristics of pressurized discharge in liquid oxygen tank equipped with porous plate in the ascent period of rocket [J]. CIESC Journal, 2025, 76(S1): 62-74. |
| [3] | Sheng CHEN, Zizheng LI, Chao MIAO, Xuegang BAI, Fei LI, Jiaxuan LIU, Tiantian LI, Shuang YANG, Rongrong LYU, Jiangyun WANG. Three-dimensional CFD simulation of non-uniform diffusion characteristic of high-risk chlorine gas in large-scale dense scene [J]. CIESC Journal, 2025, 76(9): 4630-4643. |
| [4] | Qinqin XIE, Junqi WENG, Zhenli LIN, Guanghua YE, Xinggui ZHOU. Effects of industrial catalyst structure on methanol to aromatics in a packed bed reactor [J]. CIESC Journal, 2025, 76(9): 4487-4498. |
| [5] | Zhiyong JIA, Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG. CFD-DEM simulation of effects of gas density on pressurized fluidization [J]. CIESC Journal, 2025, 76(9): 4383-4397. |
| [6] | Ze WANG, Qiong HU, Yajing CHEN, Yan WANG, Jiaxu GENG, Feiran SHEN. Leakage characteristics, sealing mechanism, and optimization design of self-impacting liquid seals [J]. CIESC Journal, 2025, 76(8): 4194-4204. |
| [7] | Yongli MA, Shu AN, Jie YANG, Mingyan LIU. A review on direct numerical simulation of gas-liquid-solid fluidized bed [J]. CIESC Journal, 2025, 76(8): 3772-3788. |
| [8] | Xi CHEN, Shuyan WANG, Baoli SHAO, Nuo DING, Lei XIE. Numerical simulation study of liquid-solid fluidized beds based on second-order moment model of particle dynamic restitution coefficient [J]. CIESC Journal, 2025, 76(7): 3246-3258. |
| [9] | Tianwei XIA, Anci WANG, Zihan JU, Xiaoxia SUN, Dinghua HU. Study on thermal storage and release characteristics of TPMS-based high density thermal storage device [J]. CIESC Journal, 2025, 76(7): 3605-3614. |
| [10] | Deyin GU, Hao YANG, Changshu LI, Zuohua LIU. Mixing behavior of pseudoplastic fluid in a fractal perforated impeller stirred tank [J]. CIESC Journal, 2025, 76(6): 2569-2579. |
| [11] | Fuyu WANG, Xuanyi ZHOU. Leakage estimation in a chemical tank farm with unsteady adjoint equation and genetic algorithm [J]. CIESC Journal, 2025, 76(6): 3104-3114. |
| [12] | Hongbin NIU, Li QIU, Jingxuan YANG, Zhonglin ZHANG, Xiaogang HAO, Zhongkai ZHAO, Abuliti ABUDULA, Guoqing GUAN. Effect of cylinder diameter on cyclone performance and its flow field mechanism [J]. CIESC Journal, 2025, 76(5): 2367-2376. |
| [13] | Lu LIU, Kai WAN, Wenyue WANG, Tai WANG, Jiancheng TANG, Shaoheng WANG. Study on orthohydrogen and parahydrogen conversion coupled flow and heat transfer based on helium expansion refrigeration [J]. CIESC Journal, 2025, 76(4): 1513-1522. |
| [14] | Guojia YAO, Zhi WANG, Ang SU, Dongge FENG, Hong TANG, Lingfang SUN. Investigation of the effect of air coefficient on the combustion characteristics of pulverized coal pre-pyrolysis [J]. CIESC Journal, 2025, 76(3): 1243-1252. |
| [15] | Nannan XIE, He CHEN, Guanghua YE, Zhongming SHU, Songbao FU, Xinggui ZHOU. Interaction of multiple impellers for gas-liquid stirred tank and optimization of their combinations [J]. CIESC Journal, 2025, 76(2): 564-575. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||