CIESC Journal

   

Interpretative analysis of carbon deposition process of methanol to olefins catalyst based on NMI-GBR-SHAP

Wenliang LI1(), Hao ZHANG2, Mingrui CHEN1, Chen LIANG1, Chi ZHAI1()   

  1. 1.School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
    2.School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
  • Received:2025-08-26 Revised:2025-10-09 Published:2025-10-20
  • Contact: Chi ZHAI

基于NMI-GBR-SHAP的甲醇制烯烃催化剂积碳过程解释性分析

李文亮1(), 张浩2, 陈鸣睿1, 梁晨1, 翟持1()   

  1. 1.昆明理工大学化学工程学院,云南 昆明 650500
    2.西南大学化学化工学院,重庆 400715
  • 通讯作者: 翟持
  • 作者简介:李文亮(1999—),男,硕士研究生,2455364688@qq.com
  • 基金资助:
    云南省兴滇英才支持计划项目(KKRD202205037)

Abstract:

Catalyst carbon deposition in the methanol to olefins (MTO) process is complex and interdependent, making it difficult to effectively control carbon deposition. This study employed an integrated analytical framework based on normalized mutual information (NMI), gradient boosting regression (GBR), and SHAP to explain the key factors influencing catalyst carbon deposition. The results revealed that when the regeneration swirl inlet linear velocity was maintained at 16-18 m/s, combined with a reactor protection steam rate of 10-13 t/h, the total regenerator char air volume was controlled at 24 000-30 000 Nm³/h, the regeneration slide valve position was maintained at 35-39%, and the steam injection rate was no less than 34%, catalyst carbon deposition could be effectively controlled (approximately 6.5-7.3%). A benchmark limit is constructed based on the above-mentioned process indicators. Once the operating conditions exceed the monitoring limit, the corresponding carbon deposition trend (rate of change) can be explained by performing SHAP analysis on the interaction characteristics, providing the necessary monitoring information for the smooth operation of the process, and providing a technical solution for carbon deposition monitoring of MTO process catalysts with both predictive accuracy and mechanism explanation.

Key words: methanol to olefins, catalyst coke deposition, normalized mutual information, gradient boosting regression, interpretable machine learning, process systems, prediction, chemical processes

摘要:

甲醇制烯烃(Methanol to Olefins, MTO)工艺中催化剂积碳过程关联因素多且存在复杂交互作用,难以有效调控积碳量。本研究构建基于归一化互信息(NMI)、梯度提升回归(GBR)与SHAP的集成分析框架对催化剂积碳的主要影响因素进行解释性研究,发现当再生一旋入口线速维持在16-18m/s,同时配合10-13t/h的反应器保护蒸汽,将再生器烧焦总风量控制在24 000-30 000 Nm³/h且再生滑阀阀位保持在35-39%,并且蒸汽配入率不低于34%时,能够对催化剂的积碳情况进行有效调控(≈6.5-7.3%)。基于上述工艺指标构建基准限,一旦运行工况超出该监测限,通过对交互特征进行SHAP分析,能够对相应的积碳趋势(变化率)作出解释,为工艺过程的平稳运行提供必要的监测信息,为MTO过程催化剂积碳监测提供了兼具预测精度和机理解释性的技术方案。

关键词: 甲醇制烯烃, 催化剂积碳, 归一化互信息, 梯度提升回归, 可解释机器学习, 过程控制, 预测, 化学过程

CLC Number: