[1] |
Ai Hong(艾红), Zhou Donghua(周东华). Fault prediction approach for dynamic system [J]. Journal of Huazhong University of Science and Technology: Natural Science Edition (华中科技大学学报:自然科学版), 2009, 37(1): 222-225
|
[2] |
Sun Qiang(孙强), Yue Jiguang(岳继光). Review on fault prognostic methods based on uncertainty [J]. Control and Decision(控制与决策), 2014, 29(5): 1-10
|
[3] |
Xu Yuan(徐圆), Liu Ying(刘莹), Zhu Qunxiong(朱群雄). A complex process fault prognosis approach based on multivariate delayed sequences [J]. CIESC Journal(化工学报), 2013, 64(12): 4290-4295
|
[4] |
Zhang Zhengdao(张正道), Hu Shousong(胡寿松). Fault prediction for nonlinear time series based on unknown input observer [J]. Control and Decision(控制与决策), 2005, 20(7): 769-772
|
[5] |
Hu Shousong(胡寿松), Zhang Zhengdao(张正道). Fault prediction for nonlinear time series based on neural network [J]. Acta Automatica Sinica (自动化学报), 2007, 33(7): 744-748
|
[6] |
Zhang Zhengdao(张正道), Cui Baotong (崔宝同). On-line fault prediction of system based on hiding semi Markov model [J]. Control and Decision(控制与决策), 2010, 25(12): 1853-1856
|
[7] |
De Carvalho A B, Pozo A, Vergilio S R. A symbolic fault-prediction model based on multiobjective particle swarm optimization [J]. Journal of Systems and Software, 2010, 83(5): 868-882
|
[8] |
Si X S, Hu C H, Yang J B, et al. On the dynamic evidential reasoning algorithm for fault prediction [J]. Expert Systems with Applications, 2011, 38(5): 5061-5080
|
[9] |
Kim H E, Tan A C C, Mathew J, et al. Bearing fault prognosis based on health state probability estimation [J]. Expert Systems with Applications, 2012, 39(5): 5200-5213
|
[10] |
Herman G, Zhang B, Wang Y, et al. Mutual information-based method for selecting informative feature sets [J]. Pattern Recognition, 2013, 46(12): 3315-3327
|
[11] |
Lü Ning(吕宁), Yu Xiaoyang(于晓洋). Fault diagnosis in TE process based on feature selection via second order mutual information [J]. CIESC Journal(化工学报), 2009, 60(9): 2252-2258
|
[12] |
Liu Xiaoxin(刘晓欣). Correlation analysis and variable selection for multivariate time series based on mutual information [D]. Dalian :Dalian University of Technology, 2013
|
[13] |
Charbonnier S, Garcia-Beltan C, Cadet C, et al. Trends extraction and analysis for complex system monitoring and decision support [J]. Engineering Applications of Artificial Intelligence, 2005, 18(1): 21-36
|
[14] |
Charbonnier S, Portet F. A self-tuning adaptive trend extraction method for process monitoring and diagnosis[J]. Journal of Process Control, 2012, 22(6): 1127-1138
|
[15] |
Gao Guangyong(高光勇), Jiang Guoping(蒋国平). Prediction of multivariable chaotic time series using optimized extreme learning machine [J]. Acta Physica Sinica(物理学报), 2012, 61(4): 1-9
|
[16] |
Wong P K, Yang Z, Vong C M, et al. Real-time fault diagnosis for gas turbine generator systems using extreme learning machine [J]. Neurocomputing, 2013, 128(3): 249-257
|
[17] |
Peng Di(彭荻), He Yanlin(贺彦林), Xu Yuan(徐圆), Zhu Qunxiong(朱群雄). Research and chemical application of feature extraction based AANN-ELM neural network [J]. CIESC Journal(化工学报), 2012,63(9): 2920-2925
|
[18] |
Liu Yi(刘毅), Wang Haiqing(王海清). Pensim simulator and its application in penicillin fermentation process [J]. Journal of System Simulation(系统仿真学报), 2007, 18(12): 3524-3527
|
[19] |
Birol G, Ündey C, Cinar A. A modular simulation package for fed-batch fermentation: penicillin production [J]. Computers & Chemical Engineering, 2002, 26(11): 1553-1565
|
[20] |
Xiong Weili(熊伟丽), Wang Xiao(王肖), Chen Minfang(陈敏芳), Xu Baoguo(徐保国). Modeling for penicillin fermentation process based on weighted LS-SVM [J]. CIESC Journal(化工学报), 2012, 63(9): 2913-2919
|