[1] |
Walker Graeme M, van Dijck P. Physiological and molecular responses of yeasts to the environment//Yeasts in Food and Beverages [M]. Berlin: Springer, 2006: 111-152.
|
[2] |
Rivas B, Moldes A B, Domínguez J M, Parajó J C. Lactic acid production from corn cobs by simultaneous saccharification and fermentation: a mathematical interpretation [J]. Enzyme and Microbial Technology, 2004, 34 (7): 627-634.
|
[3] |
Abdel-Banat B M, Hoshida H, Ano A, Nonklang S, Akada R. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast [J]. Applied Microbiology Biotechnology, 2010, 85 (4): 861-867.
|
[4] |
Zeikus J. Thermophilic bacteria: ecology, physiology and technology [J]. Enzyme and Microbial Technology, 1979, 1 (4): 243-252.
|
[5] |
Christ D, Chin J W. Engineering Escherichia coli heat-resistance by synthetic gene amplification [J]. Protein Engineering Design Selection, 2008, 21 (2): 121-125.
|
[6] |
Liu Y, Zhang G, Sun H, Sun X, Jiang N, Rasool A, Lin Z, Li C. Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices [J]. Bioresource Technology, 2014, 170: 38-44.
|
[7] |
Luan G, Dong H, Zhang T, Lin Z, Zhang Y, Li Y, Cai Z. Engineering cellular robustness of microbes by introducing the GroESL chaperonins from extremophilic bacteria [J]. Journal of Biotechnology, 2014, 178: 38-40.
|
[8] |
Ezemaduka A N, Yu J, Shi X, Zhang K, Yin C C, Fu X, Chang Z. A small heat shock protein enables Escherichia coli to grow at a lethal temperature of 50℃ conceivably by maintaining cell envelope integrity [J]. Journal of Biotechnology, 2014, 196 (11): 2004-2011.
|
[9] |
Shenhar Y, Rasouly A, Biran D, Eliora Z Ron. Adaptation of Escherichi coli to elevated temperatures involves a change in stability of heat shock gene transcripts [J]. Environmental Microbiology, 2009, 11 (12): 2989-2997.
|
[10] |
Wang Y H, Wei K Y, Smolke C D. Synthetic biology: advancing the design of diverse genetic systems [J]. Annual Reviews Chemical Biomolecular Engineering, 2013, 4: 69-102.
|
[11] |
Khalil A S, Collins J J. Synthetic biology: applications come of age [J]. Nature Reviews Genetics, 2010, 11 (5): 367-379.
|
[12] |
Benner S A, Sismour A M. Synthetic biology [J]. Nature Reviews Genetics, 2005, 6 (7): 533-543.
|
[13] |
Purnick P E, Weiss R. The second wave of synthetic biology: from modules to systems [J]. Nature Reviews Molecular Cell Biology, 2009, 10 (6): 410-422.
|
[14] |
Smoot L M, Smoot J C, Graham M R, Somerville G A, Sturdevant D E, Migliaccio C A, Sylva G L, Musser J M. Global differential gene expression in response to growth temperature alteration in group A Streptococcus [J]. Proceedings of the National Academy of Science, 2001, 98 (18): 10416-10421.
|
[15] |
Kortmann J, Narberhaus F. Bacterial RNA thermometers: molecular zippers and switches [J]. Nature Reviews Microbiology, 2012, 10 (4): 255-265.
|
[16] |
Nocker A, Hausherr T, Balsiger S, Krstulovic N P, Hennecke H, Narberhaus F. A mRNA-based thermosensor controls expression of rhizobial heat shock genes [J]. Nucleic Acids Research, 2001, 29 (23): 4800-4807.
|
[17] |
Waldminghaus T, Gaubig L C, Klinkert B, Narberhaus F. The Escherichia coli ibpA thermometer is comprised of stable and unstable structural elements [J]. RNA Biology, 2009, 6 (4): 455-463.
|
[18] |
Chowdhury S, Ragaz C, Kreuger E, Narberhaus F. Temperature- controlled structural alterations of an RNA thermometer[J]. The Journal Biological Chemistry, 2003, 278 (48): 47915-47921.
|
[19] |
Waldminghaus T, Heidrich N, Brantl S, Narberhaus F. FourU: a novel type of RNA thermometer in Salmonella [J]. Molecular Microbiology, 2007, 65 (2): 413-424.
|
[20] |
Sun Xiangying (孙翔英), Liu Yueqin (刘月芹), Sun Huan (孙欢), Jia Haiyang (贾海洋), Dai Dazhang (戴大章), Li Chun (李春). Construction of heat resistance devices for Escherichia coli and their application [J]. CIESC Journal (化工学报), 2014, 65 (8): 3128-3135.
|
[21] |
Langer T, Lu C, Echols H, Flanagan J, Hayer M K, Hartl F U. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding [J]. Nature, 1992, 356 (6371): 683-689.
|
[22] |
Schröder H, Langer T, Hartl F, Bukau B. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage [J]. EMBO Journal, 1993, 12 (11): 4137.
|