[1] |
Ahn J H, Kim S, Park H, Rahm B N, Pagilla K, Chandran K. N2O emissions from activated sludge processes, 2008—2009: results of a national monitoring survey in the United States [J]. Environ. Sci. Technol., 2010, 44 (12): 4505-4511.
|
[2] |
Kampschreur M J, van der Star W R L, Wielders H A, et al. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment [J]. Water Research, 2008, 42 (3): 812-826.
|
[3] |
Yu R, Kampschreur M J, van Loosdrecht M C M, Chandran K. Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia [J]. Environ. Sci. Technol., 2010, 44 (4): 1313-1319.
|
[4] |
Kampschreur M J, Tan N, Kleerebezem R, Picioreanu C, Hetten M, Loodrecht M. Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture [J]. Environ. Sci. Technol., 2008, 42 (2): 429-435.
|
[5] |
Kampschreur M J, Temmink H, Kleerebezem R, Picioreanu C, Jetten M, Loosdrecht M. Nitrous oxide emission during wastewater treatment [J]. Water Research, 2009, 43 (17): 4093-4103.
|
[6] |
Stuven R, Bock E. Nitrification and denitrification as a source for NO and N2O production in high-strength wastewater [J]. Water Research, 2001, 35 (8): 1905-1914.
|
[7] |
Poughon L, Dussap C G, Gros J B. Energy model and metabolic flux analysis for autotrophic nitrifiers [J]. Biotechnology and Bioengineering, 2001, 72 (4): 416-433.
|
[8] |
Stuven R, Vollmer M, Bock E. The impact of organic-matter on nitric-oxide formation by nitrosomonas-europaea [J]. Archives of Microbiology, 1992, 158 (6): 439-443.
|
[9] |
Kim S W, Miyahara M, Fushinobu S, et al. Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria [J]. Bioresource Technology, 2010, 101 (11): 3958-3963.
|
[10] |
Beanmont H, Lens S, Reijinders W, Westerhoff H, van Spanning R. Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite-sensitive transcription repressor [J]. Molecular Microbiology, 2004, 54 (1): 148-158.
|
[11] |
Beaumont H J E, Lens S I, Westerhoff H V, van Spanning R J M. Novel nirK cluster genes in Nitrosomonas europaea are required for NirK-dependent tolerance to nitrite [J]. Journal of Bacteriology, 2005, 187 (19): 6849-6851.
|
[12] |
Cantera J J L, Stein L Y. Molecular diversity of nitrite reductase genes (nirK) in nitrifying bacteria [J]. Environmental Microbiology, 2007, 9 (3): 765-776.
|
[13] |
Garbeva P, Baggs E M, Prosser J I. Phylogeny of nitrite reductase (nirK) and nitric oxide reductase (norB) genes from Nitrosospira species isolated from soil [J]. FEMS Microbiology Letters, 2007, 266 (1): 83-89.
|
[14] |
Shaw L J, Nicol G W, Smith Z, Fear J, et al. Nitrosospira ssp can produce nitrous oxide via a nitrifier denitrification pathway [J]. Evnironmental Microbiology, 2006, 8 (2): 214-222.
|
[15] |
Beanmont H, Hommes N, Sayavedra-Soto L, Arp D, Arciero D, Hooper A, Westerhoff H, van Spanning R. Nitrite reductase of Nitrosomonas europaea is not essential for production of gaseous nitrogen oxides and confers tolerance to nitrite [J]. Journal of Bacteriology, 2002, 184 (9): 2557-2560.
|
[16] |
Beanmont H, van Schooten B, Lens S, Westerhoff H, van Spanning R. Nitrosomonas europaea expresses a nitric oxide reductase during nitrification [J]. Journal of Bacteriology, 2004, 186 (13): 4417-4421.
|
[17] |
Sutka R L, Ostrom N E, Ostrom P H, Breznak J A, Gandhi H, Pitt A J, Li F. Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances [J]. Applied and Environmental Microbiology, 2006, 72 (1): 638-644.
|
[18] |
Casciotti K L, Sigman D M, Ward B B. Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria [J]. Geomicrobiology Journal, 2003, 20 (4): 335-353.
|
[19] |
Anderson J. The metabolisms of hydroxylamine to nitrite by Nitrosomonas europaea [J]. Biochemical Journal, 1964, 91: 8-17.
|
[20] |
Falcone A B, Shug A L, Nicholas D J D. Oxidation of hydroxylamine by particles from Nitrosomonas [J]. Biochemical and Biophysical Research Communications, 1962, 9 (1/2): 126-131.
|
[21] |
Ritchie G A F, Nicholas D J D. Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea [J]. Biochemical Journal, 1972, 126: 1181-1191.
|
[22] |
Hooper A, Vannelli T, Bergmann D, Arciero D. Enzymology of the oxidation of ammonia to nitrite by bacteria [J]. Antonie van Leeuwenhoek, 1997, 71: 59-67.
|
[23] |
Stein L Y, Arp D J, Berube P M, Chain P S G, Hauser L, Jetten M S M, Klotz M G, Larimer F W, Norton J M, Opden Camp H J M, Shin M, Wei X. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation [J]. Environmental Microbiology, 2007, 9 (12): 2993-3007.
|
[24] |
Liu Yue (刘越), Peng Yi (彭轶), Li Pengzhang (李鹏章), Hou Hongxun (侯红勋), Peng Yongzhen (彭永臻). The effect of on N2O production by and NH2OH oxidation during nitritation process [J]. CIESC Journal (化工学报), 2015, 66 (3): 1133-1141.
|
[25] |
Liu Xiuhong (刘秀红), Peng Yi (彭轶), Ma Tao (马涛), Liu Chunhui (刘春慧), Peng Yongzhen (彭永臻). Effects of DO concentration on N2O production during nitrification for treating domestic wastewater [J]. Environmental Science (环境科学), 2008, 29 (3): 660-664.
|
[26] |
Nogita S, Saito Y, Kuge T. A new indicator of the activated sludge process-nitrous oxide [J]. Water Science & Technology, 1981, 13: 199-204.
|
[27] |
Hynes R K, Knowles R. Production of nitrous oxide by Nitrosomonas europaea: effects of acetylene, pH and oxygen [J]. Canadian Journal of Microbiology, 1984, 30 (11): 1397-1404.
|
[28] |
Tallec G, Garnier J, Billen G, et al. Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: effect of oxygenation level [J]. Water Research, 2006, 40 (15): 2972-2980.
|
[29] |
Kim J H, Guo X, Behera S K, Park H S. A unified model of ammonium oxidation rate at various initial ammonium strength and active ammonium oxidizer concentrations [J]. Bioresource Technology, 2009, 100 (7): 2118-2123.
|
[30] |
Ostrom N E, Sutka R, Ostrom P H, Grandy A S, Huizinga K M, Gandhi H, von Fischer J C, Robertson G P. Isotopologue data reveal bacterial denitrification as the primary source of N2O during a high flux event following cultivation of a native temperate grassland [J]. Soil Biology and Biochemistry, 2010, 42 (3): 499-506.
|