CIESC Journal ›› 2016, Vol. 67 ›› Issue (1): 358-367.DOI: 10.11949/j.issn.0438-1157.20150520
WU Hong1,2,3, YANG Hao1,2, ZHAO Yuning2, LI Zhen1,2, JIANG Zhongyi1,2
Received:
2015-04-24
Revised:
2015-06-05
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Science Fund for Distinguished Young Scholars (21125627), the Program for New Century Excellent Talents in University (NCET-10-0623) and the Programme of Introducing Talents of Discipline to Universities (B06006).
吴洪1,2,3, 杨昊1,2, 赵宇宁2, 李震1,2, 姜忠义1,2
通讯作者:
姜忠义
基金资助:
国家杰出青年科学基金项目(21125627);新世纪优秀人才支持计划项目(NCET-10-0623);高等学校学科创新引智计划项目(B06006)。
CLC Number:
WU Hong, YANG Hao, ZHAO Yuning, LI Zhen, JIANG Zhongyi. Preparation and characterization of proton exchange membranes based onsulfonated poly(ether ether ketone) doped with phosphorylated mesoporoussilica submicrospheres[J]. CIESC Journal, 2016, 67(1): 358-367.
吴洪, 杨昊, 赵宇宁, 李震, 姜忠义. 磷酸化二氧化硅填充磺化聚醚醚酮质子交换膜的制备及表征[J]. 化工学报, 2016, 67(1): 358-367.
[1] | KREUER K D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells [J]. Journal of Membrane Science, 2001, 185 (1): 29-39. |
[2] | MCKEEN J C, YAN Y S, DAVIS M E. Proton conductivity in sulfonic acid-functionalized zeolite beta: effect of hydroxyl group [J]. Chemistry of Materials, 2008, 20 (12): 3791-3793. |
[3] | LUFRANO F, BAGLIO V, STAITI P, et al. Performance analysis of polymer electrolyte membranes for direct methanol fuel cells [J]. Journal of Power Sources, 2013, 243: 519-534. |
[4] | DUPUIS A C. Proton exchange membranes for fuel cells operated at medium temperatures: materials and experimental techniques [J]. Progress in Materials Science, 2011, 56 (3): 289-327. |
[5] | LABERTY-ROBERT C, VALLE K, PEREIRA F, et al. Design and properties of functional hybrid organic-inorganic membranes for fuel cells [J]. Chemical Society Reviews, 2011, 40 (2): 961-1005. |
[6] | 曹先齐, 韩吉田, 陈培培, 等. 阳极和阴极流场组合对直接甲醇燃料电池性能的影响 [J]. 化工学报, 2013, 64 (5): 1780-1788.CAO X Q, HAN J T, CHEN P P, et al. Effect of anode and cathode flow fields on performance of direct methanol fuel cell [J]. CIESC Journal, 2013, 64 (5): 1780-1788. |
[7] | PARK K T, KIM S G, CHUN J H, et al. Composite membranes based on a sulfonated poly(arylene ether sulfone) and proton-conducting hybrid silica particles for high temperature PEMFCs [J]. International Journal of Hydrogen Energy, 2011, 36 (17):10891-10900. |
[8] | SU Y H, LIU Y L, WANG D M, et al. Increases in the proton conductivity and selectivity of proton exchange membranes for direct methanol fuel cells by formation of nanocomposites having proton conducting channels [J]. Journal of Power Sources, 2009, 194 (1) : 206-213. |
[9] | NIEPCERON F, LAFITTE B, GALIANO H, et al. Composite fuel cell membranes based on an inert polymer matrix and proton-conducting hybrid silica particles [J]. Journal of Membrane Science, 2009, 338 (1): 100-110. |
[10] | KE C C, LI X J, SHEN Q A, et al. Investigation on sulfuric acid sulfonation of in-situ sol-gel derived Nafion/SiO2 composite membrane [J]. International Journal of Hydrogen Energy, 2011, 36 (5): 3606-3613. |
[11] | TOKUDA Y, NISHIOKA S, UEDA Y, et al. Preparation of proton-conductive organic-inorganic hybrid titanophosphite membranes [J]. Solid State Ionics, 2012, 225 (SI): 232-235. |
[12] | BECK J, VARTULI J, ROTH W, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. Journal of the American Chemical Society, 1992, 114: 10834-10843. |
[13] | JIN Y G, QIAO S Z, XU Z P, et al. Phosphonic acid functionalized silicas for intermediate temperature proton conduction [J]. Journal of Materials Chemistry, 2009, 19 (16): 2363-2372. |
[14] | LIN B, CHENG S, QIU L, et al. Protic ionic liquid-based hybrid proton-conducting membranes for anhydrous proton exchange membrane application [J]. Chemistry of Materials, 2010, 22 (5): 1807-1813. |
[15] | LU S, WANG D, JIANG S P, et al. HPW/MCM-41 phosphotungstic acid/mesoporous silica composites as novel proton-exchange membranes for elevated-temperature fuel cells [J]. Advanced Materials, 2010, 22 (9): 971-976. |
[16] | TOELLE P, CAVALCANTI W L, HOFFMANN M, et al. Modelling of proton diffusion in immobilised imidazole systems for application in fuel cells [J]. Fuel Cells, 2008, 8 (3): 236-243. |
[17] | WON J H, LEE H J, YOON K S, et al. Sulfonated SBA-15 mesoporous silica-incorporated sulfonated poly(phenylsulfone) composite membranes for low-humidity proton exchange membrane fuel cells: anomalous behavior of humidity-dependent proton conductivity [J]. International Journal of Hydrogen Energy, 2012, 37 (11): 9202-9211. |
[18] | TSAI C H, LIN H J, TSAI H M, et al. Characterization and PEMFC application of a mesoporous sulfonated silica prepared from two precursors, tetraethoxysilane and phenyltriethoxysilane [J]. International Journal of Hydrogen Energy, 2011, 36 (16): 9831-9841. |
[19] | CHIBA Y, TOMINAGA Y. Poly(ethylene-co-vinyl alcohol)/sulfonated mesoporous organosilicate composites as proton-conductive membranes [J]. Journal of Power Sources, 2012, 203: 42-47. |
[20] | SCHUSTER M, RAGER T, NODA A, et al. About the choice of the protogenic group in PEM separator materials for intermediate temperature, low humidity operation: a critical comparison of sulfonic acid, phosphonic acid and imidazole functionalized model compounds [J]. Fuel Cells, 2005, 5: 355-365. |
[21] | ZHAO Y, JIANG Z, LIN D, et al. Enhanced proton conductivity of the proton exchange membranes by the phosphorylated silica submicrospheres [J]. Journal of Power Sources, 2013, 224: 28-36. |
[22] | JIN Y G, QIAO S Z, XU Z P, et al. Porous silica nanospheres functionalized with phosphonic acid as intermediate-temperature proton conductors [J]. Journal of Physical Chemistry C, 2009, 113 (8): 3157-3163. |
[23] | ZHANG L, HE H Q, KAMAL R, et al. Fabrication of novel phosphotungstic acid functionalized mesoporous silica composite membrane by alternative gel-casting technique [J]. Journal of Power Sources, 2013, 221: 318-327. |
[24] | ZENG J, SHEN P K, LU S, et al. Correlation between proton conductivity, thermal stability and structural symmetries in novel HPW-meso-silica nanocomposite membranes and their performance in direct methanol fuel cells [J]. Journal of Membrane Science, 2012, 397: 92-101. |
[25] | LI Z, HE G W, ZHAO Y N, et al. Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks [J]. Journal of Power Sources, 2014, 262: 372-379. |
[26] | LIN D, CHENG Q, JIANG Q, et al. Intracellular cleavable poly(2-dimethylaminoethyl methacrylate) functionalized mesoporous silica nanoparticles for efficient siRNA delivery in vitro and in vivo [J]. Nanoscale, 2013, 5 (10): 4291-4301. |
[27] | VIVERO-ESCOTO J L, SLOWING I I, LIN V S Y. Tuning the cellular uptake and cytotoxicity properties of oligonucleotide intercalator-functionalized mesoporous silica nanoparticles with human cervical cancer cells HeLa [J]. Biomaterials, 2010, 31 (6): 1325-1333. |
[28] | RADU D R, LAI C Y, JEFTINJIA K, et al. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent [J]. Journal of the American Chemical Society, 2004, 126 (41): 13216-13217. |
[29] | SHI J, WANG X, JIANG Z, et al. Constructing spatially separated multienzyme system through bioadhesion-assisted bio-inspired mineralization for efficient carbon dioxide conversion [J]. Bioresource Technology, 2012, 118: 359-366. |
[30] | TRIPATHI B P, SHAHI V K. Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications [J]. Progress in Polymer Science, 2011, 36: 945-979. |
[31] | LIN Y F, YEN C Y, MA C C M, et al. High proton-conducting Nafion®/SO3H functionalized mesoporous silica composite membranes [J]. Journal of Power Sources, 2007, 171: 388-395. |
[32] | ZHAO Y, JIANG Z, XIAO L, et al. Lamellar crystals as proton conductors to enhance the performance of proton exchange membrane for direct methanol fuel cell [J]. Journal of Power Sources, 2011, 196 (15): 6015-6021. |
[33] | WANG J, ZHANG Y, WU H, et al. Fabrication and performances of solid superacid embedded chitosan hybrid membranes for direct methanol fuel cell [J]. Journal of Power Sources, 2010, 195 (9): 2526-2533. |
[1] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[4] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[6] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[7] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[8] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[9] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[10] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[11] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[12] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[13] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[14] | Rong WANG, Yonghong WANG, Xinru ZHANG, Jinping LI. Construction of 6FDA-based polyimide carbon molecular sieve membranes for gas separation and its application [J]. CIESC Journal, 2023, 74(4): 1433-1445. |
[15] | Yuntong GE, Wei WANG, Kai LI, Fan XIAO, Zhipeng YU, Jing GONG. AFM study of the interaction forces between micro-oil droplets and modified silica surfaces in multiphase dispersion systems [J]. CIESC Journal, 2023, 74(4): 1651-1659. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 842
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 534
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||