CIESC Journal ›› 2015, Vol. 66 ›› Issue (9): 3324-3332.DOI: 10.11949/j.issn.0438-1157.20150754
Previous Articles Next Articles
SONG Xiaoyan1, XING Jinfeng2
Received:
2015-06-01
Revised:
2015-06-04
Online:
2015-09-05
Published:
2015-09-05
Supported by:
supported by the National Natural Science Foundation of China (31371014).
宋晓艳1, 邢金峰2
通讯作者:
邢金峰
基金资助:
国家自然科学基金项目(31371014)。
CLC Number:
SONG Xiaoyan, XING Jinfeng. 3D printing technology based on two-photon polymerization[J]. CIESC Journal, 2015, 66(9): 3324-3332.
宋晓艳, 邢金峰. 双光子聚合3D打印[J]. 化工学报, 2015, 66(9): 3324-3332.
[1] | Murphy S V, Atala A. 3D bioprinting of tissues and organs [J]. Nat. Biotechnol., 2014, 32(8): 773-785. |
[2] | Campbell T A, Ivanova O S. 3D printing of multifunctional nanocomposites [J]. Nano Today, 2013, 8(2): 119-120. |
[3] | Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit [J]. Laser. Photonics. Rev., 2013, 7(1): 22-44. |
[4] | Torgersen J, Qin X H, Li Z Q, Ovsianikov A, Liska R, Stampfl J. Hydrogels for two-photon polymerization: a toolbox for mimicking the extracellular matrix [J]. Adv. Funct. Mater., 2013, 23(36): 4542-4554. |
[5] | Zeng H, Martella D, Wasylczyk P, Cerretti G, Lavocat J C, Ho C H, Parmeggiani C, Wiersma D S. High-resolution 3D direct laser writing for liquid-crystalline elastomer microstructures [J]. Adv. Mater., 2014, 26(15): 2319-2322. |
[6] | Goppert-Mayer M. Uber elementarakte mit zwei quantensprungen [J]. Ann. Physik.. 1931, 9(1): 273-294. |
[7] | Kaiser W, Garret C. Two-photon excitation in CaF2: Eu2+ [J]. Phys. Rev. Lett., 1961, 7(6): 229-231. |
[8] | Rumi M, Perry J W. Two-photon absorption: an overview of measurements and principles [J]. Adv. Opt. Photon., 2010, 2(4): 451-518. |
[9] | Pawlicki M, Collins H A, Denning R G, Anderson H L. Two-photon absorption and the design of two-photon dyes [J]. Angew. Chem. Int. Ed., 2009, 48(18): 3244-3266. |
[10] | Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit [J]. Laser. Photon. Rev., 2013, 7(1): 22-44. |
[11] | Wang Tao(王涛), Shi Mengquan(施盟泉), Li Xue(李雪), Wu Feipeng(吴飞鹏). Progress of two-photon polymerization and its applications [J]. Photographic Science and Photochemistry(感光科学与光化学), 2003, 21(3): 223-230. |
[12] | Dong Xianzi(董贤子), Chen Weiqiang(陈卫强), Zhao Zhensheng(赵振声), Duan Xuanming(段宣明). Fabrication and application of two-photon femtosecond laser micro/nano technology [J]. Chinese Science Bulletin(科学通报), 2008, 53(1): 2-13. |
[13] | Zhang Y L, Chen Q D, Xia H, Sun H B. Designable 3D nanofabrication by femtosecond laser direct writing [J]. Nano Today, 2010, 5(5): 435-448. |
[14] | Farsari M, Chichkov B N. Two-photon fabrication [J]. Nature. Photon., 2009, 3(8): 450-452. |
[15] | Xing J F, Liu J H, Zhang T B, Zhang L, Zheng M L, Duan X M. A water soluble initiator prepared through host-guest chemical interaction for microfabrication of 3D hydrogels via two-photon polymerization [J]. J. Mater. Chem. B, 2014, 2(27): 4318-4324. |
[16] | Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization [J]. Opt. Lett., 1997, 22(2): 132-134. |
[17] | Kawata S, Sun H B, Tanaka T, Takada K. Finer features for functional microdevices [J]. Nature, 2001, 412(6848): 697-698. |
[18] | Xing J F, Dong X Z, Chen W Q, Duan X M, Takeyasu N, Tanaka T, Kawata S. Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency [J]. Appl. Phys. Lett., 2007, 90(13): 130016. |
[19] | Takada K, Sun H B, Kawata S. Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting [J]. Appl. Phys. Lett., 2005, 86(7): 071122. |
[20] | Dong X Z, Zhao Z S, Duan X M. Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication [J]. Appl. Phys. Lett., 2008, 92(2): 091113. |
[21] | Tan D F, Li Y, Qi F J, Yang H, Gong Q H, Dong X Z, Duan X M. Reduction in feature size of two-photon polymerization using SCR500 [J]. Appl. Phys. Lett., 2007, 90(7): 71106. |
[22] | Li L, Gattass R R, Gershgoren E, Hwang H, Fourkas J T. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization [J]. Science, 2009, 324(5929): 910-913. |
[23] | Schafer K J, Hales J M, Balu M, Belfield K D, van Stryland E W, Hagan D J. Two-photon absorption cross-sections of common photoinitiators [J]. J. Photochem. Photobiol., A, 2004, 162(2/3): 497-502. |
[24] | Cumpston B H, Ananthavel S P, Barlow S, Dyer D L, Ehrlich J E, Erskine L L, Heikal A A, Kuebler S M, Lee I Y S, McCord-Maughon D, Qin J, Röckel H, Rumi M, Wu X L, Marder S R, Perry J W. Two-photon polymerization initiators for three dimensional optical data storage and microfabrication [J]. Nature, 1999, 398(6722): 51-54. |
[25] | Albota M, Beljonne D, Brédas J L, Ehrlich J E, Fu J Y, Heikal A A, Hess S E, Kogej T, Levin M D, Marder S R, McCord-Maughon D, Perry J W, Röckel H, Rumi M, Subramaniam G, Webb W W, Wu X L, Xu C. Design of organic molecules with large two-photon absorption cross sections [J]. Science, 1998, 281(5383): 1653-1656. |
[26] | Ren Y, Yu X Q, Zhang D J, Wang D, Zhang M L, Xu G B, Zhao X, Tian Y P, Shao Z S, Jiang M H. Synthesis, structure and properties of a new two-photon photopolymerization initiator [J]. J. Mater. Chem., 2002, 12(12): 3431-3437. |
[27] | Yan Y, Tao X, Sun Y, Yu W, Wang C, Xu G, Yang J, Zhao X, Jiang M. Synthesis, structure and nonlinear optical properties of a two-photon photopolymerization initiator [J]. J. Mater. Sci., 2005, 40(3): 597-600. |
[28] | Zhang X, Yu X, Sun Y, Xu H, Feng Y, Huang B, Tao X, Jiang M. Synthesis, structure and nonlinear optical properties of two new one and two-branch two-photon polymerization initiators [J]. Chem. Phys., 2006, 328(1/2/3): 103-110. |
[29] | Zhang X, Yu X, Sun Y, He W, Wu Y, Feng Y, Tao X, Jiang M. Synthesis and nonlinear optical properties of two new two-photon initiators: triphenylamine derivatives [J]. Opt. Mater., 2006, 28(12): 1366-1371. |
[30] | Xing J F, Chen W Q, Dong X Z, Tanaka T, Fang X Y, Duan X M, Kawata S. Synthesis, optical and initiating properties of new two-photon polymerization initiators-2,7-bis(styryl)anthraquinone derivatives [J]. J. Photochem. Photobiol. A, 2007, 189(2/3): 398-404. |
[31] | Xing J F, Chen WQ, Gu J, Dong X Z, Takeyasu N, Tanaka T, Duan X M, Kawata S. Design of high efficiency for two-photon polymerization initiator: combination of radical stabilization and large two-photon cross-section achieved by N-benzyl 3,6-bis(phenylethynyl)carbazole derivatives [J]. J. Mater. Chem., 2007, 17(14): 1433-1438. |
[32] | Xing J F, Zheng M L, Chen W Q, Dong X Z, Takeyasu N, Tanaka T, Zhao Z S, Duan X M, Kawata S. C2v symmetrical two-photon polymerization initiators with anthracene core: synthesis, optical and initiating properties [J]. Phys. Chem. Chem. Phys., 2012, 14(45): 15785-15792. |
[33] | Li Z, Pucher N, Cicha K, Torgersen J, Ligon S C, Ajami A, Husinsky W, Rosspeintner A, Vauthey E, Naumov S, Scherzer T, Stampfl J, Liska R. A straightforward synthesis and structure-activity relationship of highly efficient initiators for two-photon polymerization [J]. Macromolecules, 2013, 46(2): 352-361. |
[34] | Xing J F, Zheng M L, Duan X M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery [J]. Chem. Soc. Rev., 2015, DOI: 10.1039/c5cs00278h. |
[35] | Ciuciu A I, Cywiński P J. Two-photon polymerization of hydrogels-versatile solutions to fabricate well-defined 3D structures [J]. RSC Adv., 2014, 4(85): 45504-45516. |
[36] | Sun H B, Matsuo S, Misawa H. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymeri-zation of resin [J]. Appl. Phys. Lett., 1999, 74(6): 786-788. |
[37] | Serbin J, Gu M. Experimental evidence for superprism effects in three-dimensional polymer photonic crystals [J]. Adv. Mater., 2006, 18(2): 221-224. |
[38] | Guo R, Li Z Y, Jiang Z W. Log-pile photonic crystal fabricated by two-photon photopolymerization [J]. J. Optics. A-Pure. Appl. Optics., 2005, 7(8): 396-399. |
[39] | Rybin M V, Shishkin I I, Samusev K B, Belov P A, Kivshar Y S, Kiyan R V, Chichkov B N, Limonov M F. Band structure of photonic crystals fabricated by two-photon polymerization [J]. Crystals, 2015, 5(1): 61-73. |
[40] | Galajda P, Ormos P. Complex micromachines produced and driven by light [J]. Appl. Phys. Lett., 2001, 78(2): 249-251. |
[41] | Maruo S, Ikuta K, Korogi H. Submicron manipulation tools driven by light in a liquid [J]. Appl. Phys. Lett., 2003, 82(1): 133-135. |
[42] | Maruo S, Inoue H. Optically driven micropump produced by three-dimensional two-photon microfabrication [J]. Appl. Phys. Lett., 2006, 89(14): 44101. |
[43] | Xia H, Wang J A, Tian Y, Chen Q D, Du X B, Zhang Y L, He Y, Sun H B. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization [J]. Adv. Mater., 2010, 22(29): 3204-3207. |
[44] | Marino A, Filippeschi C, Mattoli V, Mazzolaia B, Ciofani G. Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization [J]. Nanoscale, 2015, 7(7): 2841-2850. |
[45] | Marino A, Filippeschi C, Genchi G G, Mattoli V, Mazzolai B, Ciofani G. The osteoprint: a bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation [J]. Acta. Biomater., 2014, 10(10): 4304-4313. |
[46] | Raimondi M T, Eaton S M, Lagana M, Aprile V, Nava M M, Cerullo G, Osellame R. Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing [J]. Acta. Biomater., 2013, 9(1): 4579-4584. |
[1] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[2] | Hanbing HE, Zhen LIU, Yong CHEN, Xiaofeng WANG, Jing ZENG. Synthesis and slurry control of manganese oxide powder for direct ink writing electrode [J]. CIESC Journal, 2023, 74(5): 2239-2247. |
[3] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[4] | Yuxiao LI, Qingyue WANG, Khak Ho LIM, Xiaohui LI, Erlita MASTAN, Bo PENG, Wenjun WANG. Characterization technique for kinetic coefficients of free radical polymerization [J]. CIESC Journal, 2023, 74(2): 559-570. |
[5] | Mengbo ZHANG, Linjin LOU, Yirong FENG, Yuting ZHENG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on synthesis of alkylaluminoxanes [J]. CIESC Journal, 2023, 74(2): 525-534. |
[6] | Wangkai XIANG, Yuanyuan LIU, Ying ZHENG, Pengju PAN. Preparation of medium- and high-molecular-weight poly(glycolic acid) by melt/solid-state polycondensation [J]. CIESC Journal, 2023, 74(2): 933-940. |
[7] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[8] | Xianfu CHEN, Dongyu WANG, Yiqun FAN, Weihong XING, Xu QIAO. Research progress of porous ceramic membranes based on 3D printing technologies [J]. CIESC Journal, 2023, 74(1): 105-115. |
[9] | Yang HU, Yan SUN. Self-propulsion of enzyme and enzyme-induced micro-/nanomotor [J]. CIESC Journal, 2023, 74(1): 116-132. |
[10] | Xiaobing JU, Xuechun LI, Fang SUN. Effect on dithiosalicylic acid derivative on properties of photocuring materials [J]. CIESC Journal, 2022, 73(9): 4187-4193. |
[11] | Jianing LIU, Jiahao MA, Junying ZHANG, Jue CHENG. Construction and properties of sequential dual thermal curing thiol-acrylate-epoxy 3D network [J]. CIESC Journal, 2022, 73(9): 4173-4186. |
[12] | Xuesong WANG, Xiangyu ZENG, Cuimei BO, Shuqi TANG, Chao DONG, Jun LI, Quanling ZHANG, Xiaoming JIN, Shengli YE. Dynamic economic optimal control for PTFE batch polymerization process with free terminal [J]. CIESC Journal, 2022, 73(9): 3973-3982. |
[13] | Hongxin YANG, Xingya LI, Liang GE, Tongwen XU. Preparation of mono-/divalent anion permselective membranes with piperidinium-type long side-chain [J]. CIESC Journal, 2022, 73(8): 3739-3748. |
[14] | Zhemiao YU, Zhi WANG, Menglong SHENG, Guangyu XING, Jixiao WANG. Preparation of ZIF-90/polyamide mixed matrix membrane with N2 preferential permeation for CH4 purification based on interfacial polymerization [J]. CIESC Journal, 2022, 73(7): 3273-3286. |
[15] | Wentao LI, Huijuan LIN, Hai ZHONG. LiF-rich SEI generated by in-situ gel polymer electrolyte process for lithium metal rechargeable batteries [J]. CIESC Journal, 2022, 73(7): 3240-3250. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 2744
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1287
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||