CIESC Journal ›› 2016, Vol. 67 ›› Issue (1): 152-164.DOI: 10.11949/j.issn.0438-1157.20150999
Previous Articles Next Articles
HUANG Kun1, LI Xiaopei1, XU Yizhuang2, LIU Huizhou1
Received:
2015-06-26
Revised:
2015-12-21
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Basic Research Program of China(2012CBA01203, 2013CB632602) and the National Natural Science Foundation of China (51574213, 51074150).
黄焜1, 李晓佩1, 徐怡庄2, 刘会洲1
通讯作者:
黄焜, 刘会洲
基金资助:
国家重点基础研究发展计划项目(2012CBA01203,2013CB632602);国家自然科学基金项目(51574213,51074150)。
CLC Number:
HUANG Kun, LI Xiaopei, XU Yizhuang, LIU Huizhou. Research progress on intermolecular weak interaction in extraction and separation system[J]. CIESC Journal, 2016, 67(1): 152-164.
黄焜, 李晓佩, 徐怡庄, 刘会洲. 萃取分离体系分子间弱相互作用的研究进展[J]. 化工学报, 2016, 67(1): 152-164.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20150999
[1] | MCFEARIN C L, BEAMAN D K, MOORE F G, et al. From Franklin to today: toward a molecular level understanding of bonding and adsorption at the oil-water interface [J]. Journal of Physical Chemistry C, 2009, 113: 1171-1188. |
[2] | BUHL M, KABREDE H, DISS R, et al. Effect of hydration on coordination properties of uranyl(Ⅵ) complexes. A first-principles molecular dynamics study [J]. Journal of the American Chemical Society, 2006, 128: 6357-6368. |
[3] | CUI S T, DE ALMEIDA V F, HAY B P, et al. Molecular dynamics simulation of tri-n-butyl-phosphate liquid: a force field comparative study [J]. The Journal of Physical Chemistry B, 2012, 116(1): 305-313. |
[4] | BENAY G, WIPFF G. Liquid-liquid extraction of uranyl by TBP: the TBP and ions models and related interfacial features revisited by MD and PMF simulations [J]. The Journal of Physical Chemistry B, 2014, 118: 3133-3149. |
[5] | 王伟周. 几种典型体系分子间相互作用的理论研究[D]. 成都:四川大学,2004.WANG W Z. Theoretical studies on the intermolecular interactions for some typical systems [D]. Chengdu: Sichuan University, 2004. |
[6] | 卢军明. 几种新型分子间弱相互作用的理论研究[D]. 上海:华东理工大学,2010.LU J M. The theoretical investigation of several novel noncovalent bond interactions [D]. Shanghai: East China University of Science and Technology, 2010. |
[7] | 付岑峰. 液相与界面中分子间相互作用的理论研究[D]. 合肥:中国科学技术大学,2014.FU C F. Theoretical studies on molecular interactions in solution and interface [D]. Hefei: University of Science and Technology of China, 2014. |
[8] | 田国才,陶建民,李国宝. 分子间相互作用的理论化学研究进展[J]. 云南师范大学学报,2002,22(1):30-33.TIAN G C,TAO J M,LI G B. Progress in theoretical studies of intermolecular interaction [J]. Journal of Yunnan Normal University, 2002, 22(1): 30-33. |
[9] | 张荣,罗三来,郑敦胜. 生物分子溶液中的弱相互作用研究进展[J]. 化学研究,2008,19(1):102-105.ZHANG R,LUO S L,ZHENG D S. Research progress on the weak interactions of biomolecules in solution [J]. Chemical Research, 2008, 19(1): 102-105. |
[10] | PERERA J M, STEVENS G W. Spectroscopic studies of molecular interaction at the liquid-liquid interface [J]. Anal. Bioanal. Chem., 2009, 395: 1019-1032. |
[11] | DU X Z, SHI B, LIANG Y Q. N-octadecanoyl-L-alanine amphiphile monolayer at the air/water interface and LB film studied by FTIR spectroscopy [J]. Langmuir, 1998, 14(13): 3631-3636. |
[12] | DU X Z, LIANG Y Q. Well-ordered structure of n-octadecanoyl-L-alanine Langmuir-Blodgett film studied by FTIR spectroscopy [J]. Chemical Physics Letters, 1999, 313: 565-568. |
[13] | DU X Z, LIANG Y Q. Roles of metal complex and hydrogen bond in molecular structures and phase behaviors of metal n-octadecanoyl-L-alaninate Langmuir-Blodgett films [J]. The Journal of Physical Chemistry B, 2000, 104: 10047-10052. |
[14] | DU X Z, LIANG Y Q. Structure control of ion exchange in n-octadecanoyl-L-alanine Langmuir-Blodgett films studied by FTIR spectroscopy [J]. Langmuir, 2000, 16: 3422-3426. |
[15] | BARNER B J, GREEN M J, SAEZ E I, et al. Polarization modulation fourier-transform infrared reflectance measurements of thin-films and monolayers at metal-surfaces utilizing real-time sampling electronics [J]. Analytical Chemistry, 1991, 63: 55-60. |
[16] | BREWER S H, ANTHIREYA S J, LAPPI S E, et al. Detection of DNA hybridization on gold surfaces by polarization modulation infrared reflection absorption spectroscopy [J]. Langmuir, 2002, 18: 4460-4464. |
[17] | BREWER S H, ALLEN A M, LAPPI S E, et al. Infrared detection of a phenylboronic acid terminated alkane thiol monolayer on gold surfaces [J]. Langmuir, 2004, 20: 5512-5520. |
[18] | TAKENAKA T, NOGAMI K, GOTOH H, et al. Studies on built-up films by means of polarized infrared ATR spectrum (Ⅰ): Built-up films of stearic acid [J]. Journal of Colloid and Interface Science, 1971, 35: 395-402. |
[19] | ALLARA D L, SWALEN J D. An infrared reflection spectroscopy study of oriented cadmium arachidate monolayer films on evaporated silver [J]. Journal of Physical Chemistry, 1982, 86: 2700-2704. |
[20] | CHOLLET P A, MESSIER J. Studies of oriented Langmuir Blodgett multilayers by infrared linear dichroism [J]. Journal of Chemical Physics, 1982, 73: 235-242. |
[21] | RABOLT J F, BURNS F C, SCHLOTTER N E, et al. Anisotropic orientation in molecular monolayers by infrared-spectroscopy [J]. Journal of Chemical Physics, 1983, 78: 946-952. |
[22] | DLUHY R A. Quantitative external reflection infrared spectroscopic analysis of insoluble monolayers spread at the air-water interface [J]. Journal of Physical Chemistry, 1986, 90: 1373-1379. |
[23] | ONOE Y, WATARAI H. Evaluation of the interfacial absorptivity of 2-hydroxy-5-nonylbenzophenone oxime by a molecular dynamics simulation [J]. Analytical Sciences, 1998, 14: 237-239. |
[24] | WATARAI H, ONOE Y. Molecular dynamics simulation of interfacial adsorption of 2-hydroxy oxime at heptane/water interface [J]. Solvent Extraction and Ion Exchange, 2001, 19: 155-166. |
[25] | RIEDLEDER A J, KENTISH S E, PERERA J M, et al. Structural investigation of a water/n-heptane interface: a molecular dynamics study [J]. Solvent Extraction and Ion Exchange, 2007, 25: 41-52. |
[26] | HORE D K, WALKER D S, RICHMOND G L. Layered organic structure at the carbon tetrachloride-water interface [J]. Journal of the American Chemical Society, 2007, 129: 752-753. |
[27] | WALKER D S, RICHMOND G L. Depth profiling of water molecules at the liquid-liquid interface using a combined surface vibrational spectroscopy and molecular dynamics approach [J]. Journal of the American Chemical Society, 2007, 129: 9446-9451. |
[28] | WATARAI H, GOTOH M. Interfacial mechanism in the extraction kinetics of Ni(Ⅱ) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol and molecular dynamics simulation of interfacial reactivity of the ligand [J]. Bulletin of the Chemical Society of Japan, 1997, 70: 957-964. |
[29] | BAADEN M, BURGARD M, WIPFF G. TBP at the water-oil interface: the effect of TBP concentration and water acidity investigated by molecular dynamics simulations [J]. The Journal of Physical Chemistry B, 2001, 105: 11131-11141. |
[30] | BENAY G, WIPFF G. Oil-soluble and water-soluble BTPhens and their europium complexes in octanol/water solutions: interface crossing studied by MD and PMF simulations [J]. The Journal of Physical Chemistry B, 2013, 117: 1110-1122. |
[31] | DLUHY R A, CORNELL D G. In situ measurement of the infrared-spectra of insoluble monolayers at the air-water interface [J]. Journal of Physical Chemistry, 1985, 89: 3195-3197. |
[32] | MITCHELL M L, DLUHY R A. In situ FT-IR investigation of phospholipid monolayer phase-transitions at the air water interface [J]. Journal of the American Chemical Society, 1988, 110: 712-718. |
[33] | DU X Z, MIAO W G, LIANG Y Q. IRRAS studies on chain orientation in the monolayers of amino acid amphiphiles at the air-water interface depending on metal complex and hydrogen bond formation with the head-groups [J]. The Journal of Physical Chemistry B, 2005, 109(15): 7428-7434. |
[34] | WANG Y C, DU X Z, GUO L, et al. Chain orientation and headgroup structure in Langmuir monolayers of stearic acid and metal stearate (Ag, Co, Zn, and Pb) studied by infrared reflection-absorption spectroscopy [J]. Journal of Chemical Physics, 2006, 124(13): 134706. |
[35] | WANG Y C, DU X Z, MIAO W G, et al. Molecular recognition of cytosine-and guanine-functionalized nucleolipids in the mixed monolayers at the air-water interface and Langmuir-Blodgett films [J]. The Journal of Physical Chemistry B, 2006, 110: 4914-4923. |
[36] | DU X Z, WANG Y C. Directed assembly of binary monolayers with a high protein affinity: infrared reflection absorption spectroscopy (IRRAS) and surface plasmon resonance (SPR) [J]. The Journal of Physical Chemistry B, 2007, 111: 2347-2356. |
[37] | LIU H J, ZHENG H F, MIAO W G, et al. In situ studies of metal coordinations and molecular orientations in monolayers of amino-acid-derived schiff bases at the air-water interface [J]. Langmuir, 2009, 25(5): 2941-2948. |
[38] | KONG X M, DU X Z. In situ IRRAS studies of molecular recognition of barbituric acid lipids to melamine at the air-water interface [J]. The Journal of Physical Chemistry B, 2011, 115(45): 13191-13198. |
[39] | ELMORE D L, DLUHY R A. Application of 2D IR correlation analysis to phase transitions in Langmuir monolayer films [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2000, 171: 225-239. |
[40] | MORITA S I, SHANMUKH S, DLUHY R A. Two-dimensional infrared correlation spectroscopy: global phase angles for specific analytical systems [J]. Journal of Molecular Structure, 2006, 799: 48-51. |
[41] | ELMORE D L, DLUHY R A. Pressure-dependent changes in the infrared C-H vibrations of monolayer films at the air/water interface revealed by two-dimensional infrared correlation spectroscopy [J]. Applied Spectroscopy, 2000, 54: 956-962. |
[42] | MARTIN-GASSIN G, GASSIN P M, COUSTON L, et al. Second harmonic generation monitoring of nitric acid extraction by a monoamide at the water-dodecane interface [J]. Physical Chemistry Chemical Physics, 2011, 13: 19580-19586. |
[43] | MARTIN-GASSIN G, GASSIN P M, COUSTON L, et al. Nitric acid extraction with monoamide and diamide monitored by second harmonic generation at the water/dodecane interface [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2012, 413: 130-135. |
[44] | MARTIN-GASSIN G, ARRACHART G, GASSIN P M, et al. Palmitateluciferin: a molecular design for the second harmonic generation study of ion complexation at the air-water interface [J]. The Journal of Physical Chemistry C, 2012, 116: 7450-7456. |
[45] | BANC A, BAUDIUM P, DESBAT B, et al. Ion extraction mechanism studied in a lyotropic lamellar phase [J]. The Journal of Physical Chemistry B, 2011, 115: 1376-1384. |
[46] | DIAT O, BANC A, BAUER C, et al. Active water-oil interface-model systems for evaluating the activity of a complexing agent for liquid-liquid extraction [C]// FERNANDO V L, BRUCE A M. Proceedings of the 19th International Solvent Extraction Conference. Santiago, Chile: Gecamin, 2011: 6-7. |
[47] | DIAT O. Liquid-liquid extraction - how to solubilize selectively hydrated ion in oil and kinetics? [C]// HANS-JÖRG B, LEO N. Proceedings of the 20th International Solvent Extraction Conference. Würzburg, Deutschland: Dechema e.V., 2014: 22-29. |
[48] | NOCHI K, YAMAGUCHI A, HAYASHITA T, et al. Direct observation of alkali metal ion recognition processes at the heptane/water interface by second harmonic generation spectroscopy [J]. The Journal of Physical Chemistry B, 2002, 106: 9906-9911. |
[49] | HASLAM S, CROUCHER S G, HICKMAN C G, et al. Surface second harmonic generation studies of the dodecane/water interface: the equilibrium and kinetic behavior of p-nitrophenol and tri-n-butyl phosphate [J]. Physical Chemistry Chemical Physics, 2000, 2: 3235-3245. |
[50] | GAN W, WU B H, ZHANG Z, et al. Vibrational spectra and molecular orientation with experimental configuration analysis in surface sum frequency generation (SFG) [J]. The Journal of Physical Chemistry C, 2007, 111(25): 8716-8725. |
[51] | 张贞. 液体界面分子的取向与氢键结构的和频振动光谱(SFG)研究[D]. 北京:中国科学院,2009.ZHANG Z. Investigation of molecular orientation and hydrogen bond structure of the air/liquid interfaces with sum frequency generation vibrational spectroscopy [D]. Beijing: Chinese Academy of Sciences, 2009. |
[52] | 冯冉冉. 气/液界面水分子及氢键的和频振动光谱研究[D]. 北京:中国科学院,2009.FENG R R. Investigation of sum frequency generation vibrational spectra of the water molecules and hydrogen bonding at air/liquid interfaces [D]. Beijing: Chinese Academy of Sciences, 2009. |
[53] | 徐妍妍. 界面分子手性和分子取向的原位光学二次谐波(SHG)研究[D]. 北京:中国科学院,2009.XU Y Y. Investigation of molecular chirality and orientation by in-situ optical second harmonic generation (SHG) [D]. Beijing: Chinese Academy of Sciences, 2009. |
[54] | 李晓佩. 液液萃取分离体系分子间相互作用的光谱研究[D]. 北京:中国科学院大学,2015.LI X P. Spectral studies on intermolecular interactions in the separation system [D]. Beijing: University of Chinese Academy of Sciences, 2015. |
[55] | NAOKI H, TAKAAKI H, HISANORI I. Salting-out phase separation system of water-tetrahydrofuran with co-using 1-butyl-3-methylimidazolium chloride and sodium chloride for possible extraction separation of chloro-complexes [J]. Solvent Extraction Research and Development-Japan, 2014, 21: 71-76. |
[56] | ZHANG C, HUANG K, YU P H, et al. Salting-out induced three-liquid-phase separation of Pt(Ⅳ), Pd(Ⅱ) and Rh(Ⅲ) in system of S201-acetonitrile-NaCl-water [J]. Separation and Purification Technology, 2011, 80: 81-89. |
[57] | WAKISAKA A, OHKI T. Phase separation of water-alcohol binary mixtures induced by the microheterogeneity [J]. Faraday Discussions, 2005, 129: 231-245. |
[58] | XIE S Q, YI C H, QIU X Q. Salting-out of acetone, 1-butanol, and ethanol from dilute aqueous solutions [J]. AIChE Journal, 2015, DOI: 10.1002/aic.14872. |
[59] | 李晓佩,黄焜,林洁媛,等. Hofmeister离子序列及其调控水溶液中大分子溶质行为的作用机制[J]. 化学进展,2014,26(8):1285-1291.LI X P, HUANG K, LI J Y, et al. Hofmeister ion series and its mechanism of action on affecting the behavior of macromolecular solutes in aqueous solution [J]. Progress in Chemistry, 2014, 26(8): 1285-1291. |
[60] | PARSONS D F, BOSTROM M, LO NOSTRO P, et al. Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size [J]. Physical Chemistry Chemical Physics, 2011, 13: 12352-12367. |
[61] | HEY M J, JACKSON D P, YAN H. The salting-out effect and phase separation in aqueous solutions of electrolytes and poly(ethylene glycol) [J]. Polymer, 2005, 46: 2567-2572. |
[62] | LEONTIDIS E. Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids [J]. Current Opinion in Colloid & Interface Science, 2002, 7: 81-91. |
[63] | MRACEK A, VARHANIKOVA J, LEHOCKY M, et al. The influence of Hofmeister series ions on hyaluronan swelling and viscosity [J]. Molecules, 2008, 13: 1025-1034. |
[64] | SCHWIERZ N, NETZ R R. Effective interaction between two ion-adsorbing plates: Hofmeister series and salting-in/salting-out phase diagrams from a global mean-field analysis [J]. Langmuir, 2012, 28: 3881-3886. |
[65] | CURTIS R A, ULRICH J, MONTASER A, et al. Protein-protein interactions in concentrated electrolyte solutions - Hofmeister-series effects [J]. Biotechnology and Bioengineering, 2002, 79: 367-380. |
[66] | SAGHEER F A, HEY M J. Hofmeister anion effects on aqueous solutions of poly(ethylene oxide) studied by attenuated total reflectance FT-IR spectroscopy [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2004, 245: 99-103. |
[67] | THORMANN E. On understanding of the Hofmeister effect: how addition of salt alters the stability of temperature responsive polymers in aqueous solutions [J]. RSC Advances, 2012, 2: 8297-8305. |
[68] | SHECHTER I, RAMON O, PORTNAYA I, et al. Microcalorimetric study of the effects of a chaotropic salt, KSCN, on the lower critical solution temperature (LCST) of aqueous poly(N-isopropylacrylamide) (PNIPA) solutions [J]. Macromolecules, 2009, 43: 480-487. |
[69] | COLLINS K D, WASHABAUGH M W. The Hofmeister effect and the behavior of water at interfaces [J]. Quarterly Reviews of Biophysics, 1985, 18: 323-422. |
[70] | PARSEGIAN V A. Solvation - hopes for Hofmeister[J]. Nature, 1995, 378: 335-336. |
[71] | PERREUR C, HABAS J P, LAPP A, et al. Salt influence upon the structure of aqueous solutions of branched PEO-PPO-PEO copolymers [J]. Polymer, 2006, 47: 841-848. |
[72] | MANCINELLI R, BOTTI A, BRUNI F, et al. Perturbation of water structure due to monovalent ions in solution [J]. Physical Chemistry Chemical Physics, 2007, 9: 2959-2967. |
[73] | FRANK H S, FRANKS F. Structural approach to the solvent power of water for hydrocarbons; Urea as a structure breaker [J]. Journal of Chemical Physics, 1968, 48: 4746-&. |
[74] | BALDWIN R L. How Hofmeister ion interactions affect protein stability [J]. Biophysical Journal, 1996, 71: 2056-2063. |
[75] | CACACE M G, LANDAU E M, RAMSDEN J J. The Hofmeister series: salt and solvent effects on interfacial phenomena [J]. Quarterly Reviews of Biophysics, 1997, 30: 241-277. |
[76] | FLORIN E, KJELLANDER R, ERIKSSON J C. Salt effects on the cloud point of the poly(ethylene oxide) + water-system[J]. Journal of the Chemical Society-Faraday Transactions I, 1984, 80: 2889-2910. |
[77] | COLLINS K D. Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process [J]. Methods, 2004, 34: 300-311. |
[78] | SCHOTT H, ROYCE A E, HAN S K. Effect of inorganic additives on solutions of nonionic surfactants (Ⅶ): Cloud point shift values of individual ions [J]. Journal of Colloid and Interface Science, 1984, 98: 196-201. |
[79] | SCHOTT H. Effect of inorganic additives on solutions of nonionic surfactants (ⅩⅥ): Limiting cloud points of highly polyoxyethylated surfactants [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2001, 186: 129-136. |
[80] | SCHOTT H, ROYCE A E. Effect of inorganic additives on solutions of nonionic surfactants (Ⅶ): Suspension stability [J]. Colloids and Surfaces, 1986, 19: 399-418. |
[81] | SCHOTT H, ROYCE A E. Effect of inorganic additives on solutions of nonionic surfactants (Ⅵ): Further cloud point relations [J]. Journal of Pharmaceutical Sciences, 1984, 73: 793-799. |
[82] | SCHOTT H, ROYCE A E. Effect of inorganic additives on solutions of nonionic surfactants (Ⅴ): Emulsion stability [J]. Journal of Pharmaceutical Sciences, 1983, 72: 1427-1436. |
[83] | SCHOTT H. Effect of inorganic additives on solutions of nonionic surfactants (ⅩⅤ): Effect of transition metal salts on the cloud point of octoxynol 9 (Triton X-100) [J]. Journal of Colloid and Interface Science, 1997, 192: 458-462. |
[84] | SCHOTT H. Effect of inorganic additives on solutions of nonionic surfactants (ⅩⅣ): Effect of chaotropic anions on the cloud point of octoxynol 9 (Triton X-100) [J]. Journal of Colloid and Interface Science, 1997, 189: 117-122. |
[85] | SCHOTT H. Effect of inorganic additives on solutions of nonionic surfactants (Ⅹ): Micellar properties [J]. Journal of Colloid and Interface Science, 1995, 173: 265-277. |
[86] | SCHOTT H. Salting in of nonionic surfactants by complexation with inorganic salts [J]. Journal of Colloid and Interface Science, 1973, 43: 150-155. |
[87] | SCHOTT H, HAN S K. Effect of inorganic additives on solutions of nonionic surfactants (Ⅳ): Krafft points [J]. Journal of Pharmaceutical Sciences, 1976, 65: 979-981. |
[88] | SCHOTT H, HAN S K. Effect of inorganic additives on solutions of nonionic surfactants (Ⅲ): CMC's and surface properties [J]. Journal of Pharmaceutical Sciences, 1976, 65: 975-978. |
[89] | SCHOTT H, HAN S K. Effect of inorganic additives on solutions of nonionic surfactants Ⅱ [J]. Journal of Pharmaceutical Sciences, 1975, 64: 658-664. |
[90] | SCHOTT H, HAN S K. Interaction of inorganic additives with solutions of nonionic surfactants (Ⅲ): Effect on critical micelle concentrations and Krafft points [J]. Abstracts of Papers of the American Chemical Society, 1975, 169: 26-26. |
[91] | NUCCI N V, VANDERKOOI J M. Effects of salts of the Hofmeister series on the hydrogen bond network of water [J]. Journal of Molecular Liquids, 2008, 143: 160-170. |
[92] | OMTA A W, KROPMAN M F, WOUTERSEN S, et al. Negligible effect of ions on the hydrogen-bond structure in liquid water [J]. Science, 2003, 301: 347-349. |
[93] | OMTA A W, KROPMAN M F, WOUTERSEN S, et al. Influence of ions on the hydrogen-bond structure in liquid water [J]. Journal of Chemical Physics, 2003, 119: 12457-12461. |
[94] | BATCHELOR J D, OLTEANU A, TRIPATHY A, et al. Impact of protein denaturants and stabilizers on water structure [J]. Journal of the American Chemical Society, 2004, 126: 1958-1961. |
[95] | GURAU M C, LIM S M, CASTELLANA E T, et al. On the mechanism of the Hofmeister effect [J]. Journal of the American Chemical Society, 2004, 126: 10522-10523. |
[96] | CHEN X, YANG T L, KATAOKA S, et al. Specific ion effects on interfacial water structure near macromolecules [J]. Journal of the American Chemical Society, 2007, 129(40): 12272-12279. |
[97] | GRAGSON D E, MCCARTY B M, RICHMOND G L. Ordering of interfacial water molecules at the charged air/water interface observed by vibrational sum frequency generation [J]. Journal of the American Chemical Society, 1997, 119: 6144-6152. |
[98] | DEYERLE B A, ZHANG Y J. Effects of Hofmeister anions on the aggregation behavior of PEO-PPO-PEO triblock copolymers [J]. Langmuir, 2011, 27(15): 9203-9210. |
[99] | ZHANG Y J, FURYK S, BERGBREITER D E, et al. Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series [J]. Journal of the American Chemical Society, 2005, 127: 14505-14510. |
[100] | ZHANG Y J, FURYK S, SAGLE L B, et al. Effects of Hofmeister anions on the LCST of PNIPAM as a function of molecular weight [J]. The Journal of Physical Chemistry C, 2007, 111: 8916-8924. |
[101] | CHO Y, ZHANG Y J, CHRISTENSEN T, et al. Effects of Hofmeister anions on the phase transition temperature of elastin-like polypeptides [J]. The Journal of Physical Chemistry B, 2008, 112: 13765-13771. |
[102] | GIBB C L D, GIBB B C. Anion binding to hydrophobic concavity is central to the salting-in effects of Hofmeister chaotropes [J]. Journal of the American Chemical Society, 2011, 133: 7344-7347. |
[103] | FINNEY J L, BOWRON D T. Anion bridges and salting out [J]. Current Opinion in Colloid & Interface Science, 2004, 9: 59-63. |
[104] | TASAKI K. Poly(oxyethylene)-cation interactions in aqueous solution: a molecular dynamics study [J]. Computational and Theoretical Polymer Science, 1999, 9: 271-284. |
[105] | FLORIN E. Multinuclear magnetic relaxation studies of aqueous poly(ethylene oxide) solutions containing alkali halides [J]. Macromolecules, 1985, 18: 360-368. |
[106] | LI X P, HUANG K, XU Y Z, et al. Interaction of sodium and potassium ions with PEO-PPO copolymer investigated by FTIR, Raman and NMR [J]. Vibrational Spectroscopy, 2014, 75: 59-64. |
[107] | KAMINKER I, WILSON T D, SAVELIEFF M G, et al. Correlating nuclear frequencies by two-dimensional ELDOR-detected NMR spectroscopy [J]. Journal of Magnetic Resonance, 2014, 240: 77-89. |
[108] | HILLER W, HEHN M, SINHA P, et al. Online coupling of two-dimensional liquid chromatography and NMR for the analysis of complex polymers [J]. Macromolecules, 2012, 45: 7740-7748. |
[109] | WANG J, BORCHARDT D, RABENSTEIN D L. Improved resolution in two-dimensional 1H NMR spectra of peptides by band-selective, homonuclear decoupling during both the evolution and acquisition periods: application to characterization of the binding of peptides by heparin [J]. Magnetic Resonance in Chemistry, 2006, 44(8): 744-752. |
[110] | JEANNERAT D, RONAN D, HAUDRY Y, et al. NMR characterization of complex p-oligophenyl scaffolds by means of aliasing techniques to obtain resolution-enhanced two-dimensional spectra [J]. Helvetica Chimica Acta, 2004, 87: 2190-2207. |
[111] | SPYROS A. Characterization of unsaturated polyester and alkyd resins using one-and two-dimensional NMR spectroscopy [J]. Journal of Applied Polymer Science, 2003, 88: 1881-1888. |
[112] | LAU K K S, GLEASON K K. Structural correlation study of pulsed plasma-polymerized fluorocarbon solids by two-dimensional wide-line separation NMR spectroscopy [J]. The Journal of Physical Chemistry B, 1997, 101: 6839-6846. |
[113] | MORI K, ITOH K, SUZUKI S, et al. Analysis of ultraviolet absorbers in cosmetics by two dimension NMR spectroscopy [J]. Japanese Journal of Toxicology and Environmental Health, 1996, 42: 60-66. |
[114] | SCHMIDT-ROHR K, CLAUSS J, SPIESS H W. Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by 2-dimensional wideline-separation NMR-spectroscopy [J]. Macromolecules, 1992, 25: 3273-3277. |
[115] | RANCE M, SORENSEN O W, BODENHAUSEN G, et al. Improved spectral resolution in Cosy 1H NMR spectra of proteins via double quantum filtering [J]. Biochemical and Biophysical Research Communications, 1983, 117: 479-485. |
[116] | MARION D, WUTHRICH K. Application of phase sensitive two-dimensional correlated spectroscopy (Cosy) for measurements of 1H-1H spin-spin coupling-constants in proteins [J]. Biochemical and Biophysical Research Communications, 1983, 113: 967-974. |
[117] | NODA I. Two-dimensional infrared-spectroscopy [J]. Journal of the American Chemical Society, 1989, 111: 8116-8118. |
[118] | NODA I, DOWREY A E, MARCOTT C. Two-dimensional infrared (2D IR) spectroscopy - a new tool for interpreting infrared-spectra [J]. Mikrochimica Acta, 1988, 1: 101-103. |
[119] | NODA I. 2-dimensional infrared (2D IR) spectroscopy - theory and applications [J]. Applied Spectroscopy, 1990, 44: 550-561. |
[120] | NODA I. Generalized 2-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy [J]. Applied Spectroscopy, 1993, 47: 1329-1336. |
[121] | NODA I. Determination of two-dimensional correlation spectra using the Hilbert transform [J]. Applied Spectroscopy, 2000, 54: 994-999. |
[122] | NODA I, DOWREY A E, MARCOTT C, et al. Generalized two-dimensional correlation spectroscopy [J]. Applied Spectroscopy, 2000, 54: 236A-248A. |
[123] | RUBTSOVA N I, RUBTSOV I V. Vibrational energy transport in molecules studied by relaxation-assisted two-dimensional infrared spectroscopy [J]. Annual Review of Physical Chemistry, 2015, 66: 717-738. |
[124] | FULLER F D, OGILVIE J P. Experimental implementations of two-dimensional fourier transform electronic spectroscopy [J]. Annual Review of Physical Chemistry, 2015, 66: 667-690. |
[125] | HILL R E, HUNT N T, HIRST J D. Studying biomacromolecules with two-dimensional infrared spectroscopy [J]. Advances in Protein Chemistry and Structural Biology, 2013, 93: 1-36. |
[126] | ELSAESSER T. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase [J]. Accounts of Chemical Research, 2009, 42(9): 1220-1228. |
[127] | NODA I. Recent developments in two-dimensional (2D) correlation spectroscopy [J]. Chinese Chemical Letters, 2015, 26(2): 167-172. |
[128] | PARK Y, NODA I, JUNG Y M. Two-dimensional correlation spectroscopy in polymer study [J]. Frontiers in Chemistry, 2015. DOI: 10.3389/fchem.2015.00014. |
[129] | TAKUMI H, NODA M, MATSUBARA H, et al. Dynamics of condensed monolayer and multilayer formation of hexadecylpyridinium chloride-sodium dodecyl sulfate mixed systems at the air/water interface [J]. Chemistry Letters, 2012, 41: 1218-1220. |
[130] | YANG Y L, YAN W, JING C Y. Dynamic adsorption of catechol at the goethite/aqueous solution interface: a molecular-scale study [J]. Langmuir, 2012, 28(41): 14588-14597. |
[131] | MORITA S I, SHANMUKH S, OZAKI Y, et al. A general model-based approach to two-dimensional infrared correlation spectroscopy incorporating the global phase angle [J]. Applied Spectroscopy, 2006, 60: 1279-1284. |
[132] | DLUHY R, SHANMUKH S, MORITA S I. The application of two-dimensional correlation spectroscopy to surface and interfacial analysis [J]. Surface and Interface Analysis, 2006, 38: 1481-1496. |
[133] | SHANMUKH S, BISWAS N, WARING A J, et al. Structure and properties of phospholipid-peptide monolayers containing monomeric SP-B1-25 (Ⅱ): Peptide conformation by infrared spectroscopy [J]. Biophysical Chemistry, 2005, 113: 233-244. |
[134] | BISWAS N, WARING A J, WALTHER F, et al. Structure and properties of phospholipid-peptide monolayers containing monomeric SP-B1-25 (Ⅰ): Phases and morphology by epifluorescence microscopy [J]. Biophysical Chemistry, 2005, 113: 223-232. |
[135] | SHANMUKH S, DLUHY R A. kν correlation analysis. A quantitative two-dimensional IR correlation method for analysis of rate processes with exponential functions [J]. The Journal of Physical Chemistry A, 2004, 108: 5625-5634. |
[136] | SHANMUKH S, DLUHY R A. 2D IR analyses of rate processes in lipid-antibiotic monomolecular films [J]. Vibrational Spectroscopy, 2004, 36: 167-177. |
[137] | SHANMUKH S, HOWELL P, BAATZ J E, et al. Structure of hydrophobic surfactant proteins SP-B and SP-C studied using 2D IR and beta nu correlation analysis [J]. Biophysical Journal, 2003, 84: 55A-55A. |
[138] | SHANMUKH S, HOWELL P, BAATZ J E, et al. Effect of hydrophobic surfactant proteins SP-B and SP-C on phospholipid monolayers. protein structure studied using 2D IR and beta nu correlation analysis [J]. Biophysical Journal, 2002, 83: 2126-2141. |
[139] | ELMORE D L, SHANMUKH S, DLUHY R A. A study of binary phospholipid mixtures at the air-water interface using infrared reflection-absorption spectroscopy and 2D IR βν correlation analysis [J]. The Journal of Physical Chemistry A, 2002, 106: 3420-3428. |
[140] | ELMORE D L, DLUHY R A. βν-correlation analysis: a modified two-dimensional infrared correlation method for determining relative rates of intensity change [J]. The Journal of Physical Chemistry B, 2001, 105: 11377-11386. |
[141] | THOMAS M, RICHARDSON H H. Two-dimensional FT-IR correlation analysis of the phase transitions in a liquid crystal, 4'-n-octyl-4-cyanobiphenyl (8CB) [J]. Vibrational Spectroscopy, 2000, 24: 137-146. |
[142] | MORITA S, SHINZAWA H, TSENKOVA R, et al. Computational simulations and a practical application of moving-window two-dimensional correlation spectroscopy [J]. Journal of Molecular Structure, 2006, 799: 111-120. |
[143] | SASIC S, MUSZYNSKI A, OZAKI Y. A new possibility of the generalized two-dimensional correlation spectroscopy (Ⅱ): Sample-sample and wavenumber-wavenumber correlations of temperature-dependent near-infrared spectra of oleic acid in the pure liquid state [J]. The Journal of Physical Chemistry A, 2000, 104: 6388-6394. |
[144] | SASIC S, MUSZYNSKI A, OZAKI Y. A new possibility of the generalized two-dimensional correlation spectroscopy (Ⅰ): Sample-sample correlation spectroscopy [J]. The Journal of Physical Chemistry A, 2000, 104: 6380-6387. |
[145] | SASIC S, AMARI T, OZAKI Y. Sample-sample and wavenumber-wavenumber two-dimensional correlation analyses of attenuated total reflection infrared spectra of polycondensation reaction of bis(hydroxyethylterephthalate) [J]. Analytical Chemistry, 2001, 73: 5184-5190. |
[146] | SEGTNAN V H, SASIC S, ISAKSSON T, et al. Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis [J]. Analytical Chemistry, 2001, 73: 3153-3161. |
[147] | WU Y Q, JIANG J H, OZAKI Y. A new possibility of generalized two-dimensional correlation spectroscopy: hybrid two-dimensional correlation spectroscopy [J]. The Journal of Physical Chemistry A, 2002, 106(11): 2422-2429. |
[148] | MORITA S, SHINZAWA H, NODA I, et al. Perturbation-correlation moving-window two-dimensional correlation spectroscopy [J]. Applied Spectroscopy, 2006, 60: 398-406. |
[149] | MURAYAMA K, CZARNIK-MATUSEWICZ B, WU Y Q, et al. Comparison between conventional spectral analysis methods, chemometrics, and two-dimensional correlation spectroscopy in the analysis of near-infrared spectra of protein [J]. Applied Spectroscopy, 2000, 54: 978-985. |
[150] | WU Y Q, MURAYAMA K, OZAKI Y. Two-dimensional infrared spectroscopy and principle component analysis studies of the secondary structure and kinetics of hydrogen-deuterium exchange of human serum albumin [J]. The Journal of Physical Chemistry B, 2001, 105: 6251-6259. |
[151] | ROBERT P, MANGAVEL C, RENARD D. Infrared spectroscopy as applied to glycinin film and gel formation kinetics [J]. Applied Spectroscopy, 2001, 55: 781-787. |
[152] | SASIC S, OZAKI Y. Comparison of principal component analysis and generalized two-dimensional correlation spectroscopy: spectral analysis of synthetic model system and near-infrared spectra of milk [J]. Applied Spectroscopy, 2001, 55: 29-38. |
[153] | JUNG Y M, SHIN H S, KIM S B, et al. New approach to generalized two-dimensional correlation spectroscopy (Ⅰ): Combination of principal component analysis and two-dimensional correlation spectroscopy [J]. Applied Spectroscopy, 2002, 56: 1562-1567. |
[154] | JUNG Y M, KIM S B, NODA I. New approach to generalized two-dimensional correlation spectroscopy (Ⅳ): Eigenvalue manipulation transformation (EMT) for partial attenuation of dominant factors [J]. Applied Spectroscopy, 2003, 57: 850-857. |
[155] | JUNG Y M, KIM S B, NODA I. New approach to generalized two-dimensional correlation spectroscopy (Ⅱ): Eigenvalue manipulation transformation (EMT) for noise suppression [J]. Applied Spectroscopy, 2003, 57: 557-563. |
[156] | JUNG Y M, KIM S B, NODA I. New approach to generalized two-dimensional correlation spectroscopy (Ⅲ): Eigenvalue manipulation transformation (EMT) for spectral selectivity enhancement [J]. Applied Spectroscopy, 2003, 57: 564-570. |
[157] | NODA I. Close-up view on the inner workings of two-dimensional correlation spectroscopy [J]. Vibrational Spectroscopy, 2012, 60: 146-153. |
[158] | NODA I. Projection two-dimensional correlation analysis [J]. Journal of Molecular Structure, 2010, 974: 116-126. |
[159] | SHINZAWA H, AWA K, NODA I, et al. Pressure-induced variation of cellulose tablet studied by two-dimensional (2D) near-infrared (NIR) correlation spectroscopy in conjunction with projection pretreatment [J]. Vibrational Spectroscopy, 2013, 65: 28-35. |
[160] | KIM M K, RYU S R, NODA I, et al. Projection 2D correlation analysis of spin-coated film of biodegradable P(HB-co-HHx)/PEG blend [J]. Vibrational Spectroscopy, 2012, 60: 163-167. |
[161] | NODA I. Kernel analysis for two-dimensional (2D) correlation spectroscopy [J]. Journal of Molecular Structure, 2006, 799: 34-40. |
[162] | QI J, HUANG K, GAO X X, et al. Orthogonal sample design scheme for two-dimensional synchronous spectroscopy: application in probing Lanthanide ions interactions with organic ligands in solution mixtures [J]. Journal of Molecular Structure, 2008, 883: 116-123. |
[163] | QI J, LI H Z, HUANG K, et al. Orthogonal sample design scheme for two-dimensional synchronous spectroscopy and its application in probing intermolecular interactions [J]. Applied Spectroscopy, 2007, 61: 1359-1365. |
[164] | ZHANG C F, HUANG K, LI H Z, et al. Double orthogonal sample design scheme and corresponding basic patterns in two-dimensional correlation spectra for probing subtle spectral variations caused by intermolecular interactions [J]. The Journal of Physical Chemistry A, 2009, 113(44): 12142-12156. |
[165] | LI X P, PAN Q H, CHEN J, et al. Asynchronous orthogonal sample design scheme for two-dimensional correlation spectroscopy (2D-COS) and its application in probing intermolecular interactions from overlapping infrared (IR) bands [J]. Applied Spectroscopy, 2011, 65: 901-917. |
[166] | CHEN J, BI Q, LIU S X, et al. Double asynchronous orthogonal sample design scheme for probing intermolecular interactions [J]. The Journal of Physical Chemistry A, 2012, 116(45): 10904-10916. |
[167] | WU Y Q, NODA I. Quadrature orthogonal signal corrected two-dimensional correlation spectroscopy [J]. Applied Spectroscopy, 2006, 60: 605-610. |
[168] | WU Y Q, NODA I. Extension of quadrature orthogonal signal corrected two dimensional (QOSC 2D) correlation spectroscopy (Ⅰ): Principal component analysis based QOSC 2D [J]. Applied Spectroscopy, 2007, 61: 1040-1044. |
[169] | LI X P, LIU S X, CHEN J, et al. The influence of changing the sequence of concentration series on the 2D asynchronous spectroscopy generated by the asynchronous orthogonal sample design (AOSD) approach [J]. Vibrational Spectroscopy, 2012, 60: 212-216. |
[170] | LI X P, BI Q, LIU S X, et al. Improvement of the sensitivity of the two-dimensional asynchronous spectroscopy based on the AOSD approach by using a modified reference spectrum [J]. Journal of Molecular Structure, 2013, 1034: 101-111. |
[171] | NODA I. Advances in two-dimensional correlation spectroscopy [J]. Vibrational Spectroscopy, 2004, 36: 143-165. |
[172] | CZARNECKI M A. Interpretation of two-dimensional correlation spectra: science or art? [J] Applied Spectroscopy, 1998, 52: 1583-1590. |
[173] | LI X P, FAN X K, HUANG K, et al. Characterization of intermolecular interaction between two substances when one substance does not possess any characteristic peak [J]. Journal of Molecular Structure, 2014, 1069: 127-132. |
[1] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[2] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[3] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[4] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[5] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[6] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[7] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[8] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[9] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[10] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[11] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[12] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[13] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[14] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[15] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||