[1] |
Balat M, Balat H. Progress in biodiesel processing [J]. Appl. Energy, 2010, 87: 1815-1835.
|
[2] |
Naik S N, Goud V V, Rout P K, Dalai A K. Production of first and second generation biofuels: a comprehensive review [J]. Sust. Renew. Energy Rev., 2010, 14: 578-597.
|
[3] |
Govindaswamy S, Vane L M. Multi-stage continuous culture fermentation of glucose-xylose mixtures to fuel ethanol using genetically engineered Saccharomyces cerevisiae 424A [J].Bioresour. Technol., 2010, 101: 1277-1284.
|
[4] |
Su Fang, Ma Ling, Song Daiyu, Zhang Xianghuan, Guo Yihang. Design of a highly ordered mesoporous H3PW12O40/ ZrO2-Si(Ph)Si hybrid catalyst for methyl levulinate synthesis [J]. Green Chem., 2013, 15: 885-890.
|
[5] |
Zhang J, Wu S, Li B, Zhang H. Advances in the catalytic production of valuable levulinic acid derivatives [J]. ChemCatChem, 2012, 4: 1230-1237.
|
[6] |
Geilen F M A, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system [J]. Angew. Chem., Int. Ed., 2010, 49: 5510-5514.
|
[7] |
Grote A F V, Tollens B. Untersuchungen über Kohlenhydrate(Ⅰ): Ueber die bei Einwirkung von Schwefelsäure auf Zucker entstehende Säure (levulinsäure) [J]. Justus Liebigs Ann. Chem., 1875, 175(1/2): 181-204.
|
[8] |
Tominaga K, Mori A, Fukushima Y, Shimada S, Sato K. Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose [J]. Green Chem., 2011, 13: 810-812.
|
[9] |
Wu X, Fu J, Lu X. One-pot preparation of methyl levulinate from catalytic alcoholysis of cellulose in near-critical methanol [J]. Carbohydr. Res., 2012, 358: 37-39.
|
[10] |
Fernandes D R, Rocha A S, Mai E F, Mota C J A, Silva V T. Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts [J]. Appl. Catal. A, 2012, 425/426: 199-204.
|
[11] |
Zhou L, Zou H, Nan J, Wu L, Yang X, Su Y, Lu T, Xu J. Conversion of carbohydrate biomass to methyl levulinate with Al2(SO4)3 as a simple, cheap and efficient catalyst [J]. Catal. Commun., 2014, 50: 13-16.
|
[12] |
Mascal M, Nikitin E B. High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl) furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural [J]. Green Chem., 2010, 12: 370-373.
|
[13] |
Kean J R, Graham A E. Indium(Ⅲ) triflate promoted synthesis of alkyl levulinates from furyl alcohols and furyl aldehydes [J]. Catal. Commun., 2015, 59: 175-179.
|
[14] |
Nevesa P, Lima S, Pillinger M, Rocha S M, Rocha J, Valente A A. Conversion of furfuryl alcohol to ethyl levulinate using porous aluminosilicate acid catalysts [J]. Catal. Today, 2013, 218/219: 76-84.
|
[15] |
McKenzie B F. Levulinic acid [J]. Org. Synth., 1929, 9: 50-51.
|
[16] |
Wu X, Fu J, Lu X. One-pot preparation of methyl levulinate from catalytic alcoholysis of cellulose in near-critical methanol [J]. Catal. Rev., 2012, 358: 37-39.
|
[17] |
Peng L, Lin L, Li H. Extremely low sulfuric acid catalyst system for synthesis of methyl levulinate from glucose [J]. Ind. Crops. Prod., 2012, 40:136-144.
|
[18] |
Peng L, Lin L, Li H, Yang Q. Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts [J]. Appl. Energy, 2011,88: 4590-4596.
|
[19] |
Njagi E C, Genuino H C, Kuo C H, Dharmarathna S, Gudz A, Suib S L. High-yield selective conversion of carbohydrates to methyl levulinate using mesoporous sulfated titania-based catalysts [J]. Micropor. Mesopor. Mat., 2015, 202: 68-72.
|
[20] |
Chang C, Xu G, Zhu W, Bai J, Fang S. One-pot production of a liquid biofuel candidate-ethyl levulinate from glucose and furfural residues using a combination of extremely low sulfuric acid and zeolite USY [J]. Fuel, 2015, 140: 365-370.
|