CIESC Journal ›› 2016, Vol. 67 ›› Issue (1): 119-128.DOI: 10.11949/j.issn.0438-1157.20151033
Previous Articles Next Articles
XIAO Wenhai1,2, WANG Ying1,2, YUAN Yingjin1,2
Received:
2015-07-01
Revised:
2015-11-09
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National High Technology Research and Development Program of China (2012AA02A701).
肖文海1,2, 王颖1,2, 元英进1,2
通讯作者:
元英进
基金资助:
国家高技术研究发展计划重大项目(2012AA02A701)。
CLC Number:
XIAO Wenhai, WANG Ying, YUAN Yingjin. Core technology in chemicals green manufacturing: synthetic biology[J]. CIESC Journal, 2016, 67(1): 119-128.
肖文海, 王颖, 元英进. 化学品绿色制造核心技术——合成生物学[J]. 化工学报, 2016, 67(1): 119-128.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20151033
[1] | KEASLING J D. Synthetic biology for synthetic chemistry [J]. ACS Chem. Biol., 2008, 3: 64-76. |
[2] | KHALIL A S, COLLINS J J. Synthetic biology: applications come of age [J]. Nat. Rev. Genet., 2010, 11: 367-379. |
[3] | FORSTER A C, LEE S Y. Editorial: NextGen SynBio has arrived [J]. Biotechnol. J., 2012, 7: 872. |
[4] | PRINDLE A. Synthetic biology at all scales [J]. Trends Biotechnol., 2013, 31: 607-608. |
[5] | WANG Y H, WEI K Y, SMOLKE C D. Synthetic biology: advancing the design of diverse genetic systems [J]. Annu. Rev. Chem. Biomol. Eng., 2013, 4: 69-102. |
[6] | SINGH V. Recent advancements in synthetic biology: current status and challenges [J]. Gene, 2014, 535: 1-11. |
[7] | AGAPAKIS C M. Designing synthetic biology [J]. ACS Synth. Biol., 2014, 3: 121-128. |
[8] | CHAO R, YUAN Y, ZHAO H. Recent advances in DNA assembly technologies [J]. FEMS Yeast Res., 2014, doi: 10.1111/1567-1364. 12171. |
[9] | SHETTY R P, ENDY D, KNIGHT T F Jr. Engineering BioBrick vectors from BioBrick parts [J]. J. Biol. Eng., 2008, 2: 5. |
[10] | Registry of standard biological parts[EB/OL]. |
[2014] . http://www.webcitation.org/6O8Ha2b2B. | |
[11] | HAYDEN E C. Synthetic-biology firms shift focus [J]. Nature, 2014, 505: 598. |
[12] | U.S. Department of Defense. DOD science & technology priorities [EB/OL]. |
[2014] . http://community.apan.org/afosr/m/alea_stewart/135113/download.aspx. | |
[13] | U.S. Department of Energy. Synthetic biology, report to congress [EB/OL]. |
[2013] . http://www.synberc.org/sites/default/files/DOE% 20Synthetic%20Biology%20Report%20to%20Congress_Fnl.pdf. | |
[14] | U.S. National Academy of Sciences. Industrialization of biology: a roadmap to accelerate the advanced manufacturing of chemicals [EB/OL]. |
[2015] . http://www.nap.edu/catalog/19001. | |
[15] | The McKinsey Global Institute. Disruptive technologies: advances that will transform life, business, and the global economy[EB/OL]. |
[2013] . http://www.mckinsey.com/insights/business_technology/disruptive_technologies. | |
[16] | UK. Department for Business, Innovation & Skills. Eight great technologies: infographics [EB/OL]. |
[2013] . https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/249268/synthetic_biology_infographic.pdf. | |
[17] | NIELSEN J, FUSSENEGGER M, KEASLING J, et al. Engineering synergy in biotechnology [J]. Nat. Chem. Biol., 2014, 10: 319-322. |
[18] | JULLESSON D, DAVID F, PFLEGER B, et al. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals [J]. Biotechnol. Adv., 2015, doi: 10.1016/j.biotechadv. 2015.02.011. |
[19] | WEI N, OH E J, MILLION G, et al. Simultaneous utilization of cellobiose, xylose, and acetic acid from Lignocellulosic biomass for biofuel production by an engineered yeast platform [J]. ACS Synth. Biol., 2015, 4: 707-713. |
[20] | EITEMAN M A, LEE S A, ALTMAN E. A co-fermentation strategy to consume sugar mixtures effectively [J]. J. Biol. Eng., 2008, 2: 3. |
[21] | MIRA N P, PALMA M, GUERREIRO J F, et al. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid [J]. Microb. Cell Fact., 2010, 9: 79. |
[22] | KNOTHE G. Biodiesel and renewable diesel: a comparison progress in energy and combustion [J]. Science, 2010, 36: 364-373. |
[23] | HOOK S E, WRIGHT A D, MCBRIDE B W. Methanogens: methane producers of the rumen and mitigation strategies [J]. Archaea, 2010, 2010: 945785. |
[24] | GOYAL N, WIDIASTUTI H, KARIMI I A, et al. A genome-scale metabolic model of Methanococcus maripaludis S2 for CO2 capture and conversion to methane [J]. Mol. Biosyst., 2014, 10: 1043-1054. |
[25] | BOWMAN J P, SLY L I, STACKEBRANDT E. The phylogenetic position of the family Methylococcaceae [J]. Int. J. Syst. Bacteriol., 1995, 45: 182-185. |
[26] | PIEJA A J, ROSTKOWSKI K H, CRIDDLE C S. Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic proteobacteria [J]. Microb. Ecol., 2011, 62: 564-573. |
[27] | PIEJA A J, SUNDSTROM E R, CRIDDLE C S. Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP [J]. Appl. Environ. Microbiol., 2011, 77: 6012-6019. |
[28] | PIEJA A J, SUNDSTROM E R, CRIDDLE C S. Cyclic alternating methane and nitrogen limitation increases PHB production in a methanotrophic community [J]. Bioresour. Technol., 2012, 107: 385-392. |
[29] | XIONG M, SCHNEIDERMAN D K, BATES F S, et al. Scalable production of mechanically tunable block polymers from sugar [J]. Proc. Natl. Acad. Sci. U. S. A., 2014, 111: 8357-8362. |
[30] | YAO Y F, WANG C S, QIAO J, et al. Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway [J]. Metab. Eng., 2013, 19: 79-87. |
[31] | INSOMPHUN C, XIE H, MIFUNE J, et al. Improved artificial pathway for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with high C6-monomer composition from fructose in Ralstonia eutropha [J]. Metab. Eng., 2015, 27: 38-45. |
[32] | AJIKUMAR, P K., XIAO W H, TYO K E, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli [J]. Science, 2010, 330: 70-74. |
[33] | LEONARD E, AJIKUMAR P K, THAYER K, et al. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control [J]. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 13654-13659. |
[34] | SZCZEBARA F M, CHANDELIER C, VILLERET C, et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast [J]. Nat. Biotechnol., 2003, 21: 143-149. |
[35] | BREITLING R, TAKANO E. Synthetic biology advances for pharmaceutical production [J]. Curr. Opin. Biotechnol., 2015, 35C: 46-51. |
[36] | CARTER O A, PETERS R J, CROTEAU R. Monoterpene biosynthesis pathway construction in Escherichia coli [J]. Phytochemistry, 2003, 64: 425-433. |
[37] | CHANG M C, EACHUS R A, TRIEU W, et al. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s [J]. Nat. Chem. Biol., 2007, 3: 274-277. |
[38] | PADDON C J, KEASLING J D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development [J]. Nat. Rev. Microbiol., 2014, 12: 355-367. |
[39] | HONG K K, NIELSEN J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries [J]. Cell Mol. Life Sci., 2012, 69: 2671-2690. |
[40] | CASPETA L, CHEN Y, GHIACI P, et al. Biofuels. Altered sterol composition renders yeast thermotolerant [J]. Science, 2014, 346: 75-78. |
[41] | SHONG J, DIAZ M R, COLLINS C H. Towards synthetic microbial consortia for bioprocessing [J]. Curr. Opin. Biotechnol., 2012, 23: 798-802. |
[42] | ZHOU K, QIAO K, EDGAR S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products [J]. Nat. Biotechnol., 2015, 33: 377-383. |
[43] | LUO Y, LI B Z, LIU D, et al. Engineered biosynthesis of natural products in heterologous hosts [J]. Chem. Soc. Rev., 2015, doi: 10.1039/c5cs00025d. |
[44] | FAN L H, ZHANG Z J, YU X Y, et al. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production [J]. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 13260-13265. |
[45] | QI H, LI B Z, ZHANG W Q, et al. Modularization of genetic elements promotes synthetic metabolic engineering [J]. Biotechnol. Adv., 2015, doi: 10.1016/j.biotechadv.2015.04.002. |
[46] | ELLIS T, ADIE T, BALDWIN G S. DNA assembly for synthetic biology: from parts to pathways and beyond [J]. Integr. Biol. (Camb), 2011, 3: 109-118. |
[47] | ZHOU Y J, GAO W, RONG Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production [J]. J. Am. Chem. Soc., 2012, 134: 3234-3241. |
[48] | DUEBER J E, WU G C, MALMIRCHEGINI G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux [J]. Nat. Biotechnol., 2009, 27: 753-759. |
[49] | JIANG W, BIKARD D, COX D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems [J]. Nat. Biotechnol., 2013, 31: 233-239. |
[50] | BAO Z, XIAO H, LIANG J, et al. Homology-Integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae [J]. ACS Synth. Biol., 2015, 4: 585-594. |
[51] | SANDER J D, JOUNG J K. CRISPR-Cas systems for editing, regulating and targeting genomes [J]. Nat. Biotechnol., 2014, 32: 347-355. |
[52] | WANG H H, ISAACS F J, CARR P A, et al. Programming cells by multiplex genome engineering and accelerated evolution [J]. Nature, 2009, 460: 894-898. |
[53] | DAVID F, SIEWERS V. Advances in yeast genome engineering [J]. FEMS Yeast Res., 2014, doi: 10.1111/1567-1364.12200. |
[54] | DRAGOSITS M, MATTANOVICH D. Adaptive laboratory evolution—principles and applications for biotechnology [J]. Microb. Cell. Fact., 2013, 12: 64. |
[55] | PORTNOY V A, BEZDAN D, ZENGLER K. Adaptive laboratory evolution--harnessing the power of biology for metabolic engineering [J]. Curr. Opin. Biotechnol., 2011, 22: 590-594. |
[56] | REYES L H, GOMEZ J M, KAO K C. Improving carotenoids production in yeast via adaptive laboratory evolution [J]. Metab. Eng., 2014, 21: 26-33. |
[57] | DAHL R H, ZHANG F, ALONSO-GUTIERREZ J, et al. Engineering dynamic pathway regulation using stress-response promoters [J]. Nat. Biotechnol., 2013, 31: 1039-1046. |
[58] | KEASLING J D. Manufacturing molecules through metabolic engineering [J]. Science, 2010, 330: 1355-1358. |
[59] | ZHANG F, CAROTHERS J M, KEASLING J D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids [J]. Nat. Biotechnol., 2013, 30: 354-359. |
[60] | HOLTZ W J, KEASLING J D. Engineering static and dynamic control of synthetic pathways [J]. Cell, 2010, 140: 19-23. |
[61] | CHAO R, YUAN Y, ZHAO H. Building biological foundries for next-generation synthetic biology [J]. Sci. China. Life Sci., 2015, doi: 10.1007/s11427-015-4866-8. |
[62] | YUAN L Z, ROUVIERE P E, LAROSSA R A, et al. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli [J]. Metab. Eng., 2006, 8: 79-90.oid pathway optimization for Taxol precursor overproduction in Escherichia coli[J]. Science. 2010, 330: 70-74. |
[33] | LEONARD E, AJIKUMAR P K, THAYER K, et al. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control[J]. Proc. Natl. Acad. Sci. U. S. A., 2010, 107:13654-13659. |
[34] | SZCZEBARA F M, CHANDELIER C, VILLERET C, et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast[J]. Nat. Biotechnol., 2003, 21:143-149. |
[35] | BREITLING R, TAKANO E. Synthetic biology advances for pharmaceutical production[J]. Curr. Opin. Biotechnol., 2015, 35C:46-51. |
[36] | CARTER O A, PETERS R J, CROTEAU R. Monoterpene biosynthesis pathway construction in Escherichia coli[J]. Phytochemistry. 2003, 64:425-433. |
[37] | CHANG M C, EACHUS R A, TRIEU W, et al. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s [J]. Nat. Chem. Biol., 2007, 3:274-277. |
[38] | PADDON C J, KEASLING J D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development[J]. Nat. Rev. Microbiol., 2014, 12:355-367. |
[39] | HONG K K, NIELSEN J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries[J]. Cell Mol. Life Sci., 2012, 69:2671-2690. |
[40] | CASPETA L, CHEN Y, GHIACI P, et al. Biofuels. Altered sterol composition renders yeast thermotolerant[J]. Science, 2014, 346:75-78. |
[41] | SHONG J, DIAZ M R, COLLINS C H. Towards synthetic microbial consortia for bioprocessing[J]. Curr. Opin. Biotechnol., 2012, 23:798-802. |
[42] | ZHOU K, QIAO K, EDGAR S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nat. Biotechnol., 2015, 33:377-383. |
[43] | LUO Y, LI B Z, LIU D, et al. Engineered biosynthesis of natural products in heterologous hosts[J]. Chem. Soc. Rev. 2015. doi:10.1039/c5cs00025d. |
[44] | FAN L H, ZHANG Z J, YU X Y, et al. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production[J]. Proc. Natl. Acad. Sci. U. S. A., 2012, 109:13260-13265. |
[45] | QI H, LI B Z, ZHANG W Q, et al. Modularization of genetic elements promotes synthetic metabolic engineering[J]. Biotechnol. Adv., 2015. doi:10.1016/j.biotechadv.2015.04.002. |
[46] | ELLIS T, ADIE T, BALDWIN G S. DNA assembly for synthetic biology: from parts to pathways and beyond[J]. Integr. Biol. (Camb), 2011, 3:109-118. |
[47] | ZHOU Y J, GAO W, RONG Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. J. Am. Chem. Soc., 2012, 134:3234- 3241. |
[48] | DUEBER J E, WU G C, MALMIRCHEGINI G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux[J]. Nat. Biotechnol., 2009, 27:753-759. |
[49] | JIANG W, BIKARD D, COX D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nat. Biotechnol., 2013, 31:233-239. |
[50] | BAO Z, XIAO H, LIANG J, et al. Homology-Integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae[J]. ACS Synth. Biol., 2015, 4:585-594. |
[51] | SANDER J D, JOUNG J K. CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nat. Biotechnol. 2014, 32:347-355. |
[52] | WANG H H, ISAACS F J, CARR P A, et al. Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature, 2009, 460:894-898. |
[53] | DAVID F, SIEWERS V. Advances in yeast genome engineering[J]. FEMS Yeast Res., 2014. doi:10.1111/1567-1364.12200. |
[54] | DRAGOSITS M, MATTANOVICH D. Adaptive laboratory evolution--principles and applications for biotechnology[J]. Microb. Cell. Fact., 2013, 12:64. |
[55] | PORTNOY V A, BEZDAN D, ZENGLER K. Adaptive laboratory evolution--harnessing the power of biology for metabolic engineering[J]. Curr. Opin. Biotechnol., 2011, 22:590-594. |
[56] | REYES L H, GOMEZ J M, KAO K C. Improving carotenoids production in yeast via adaptive laboratory evolution[J]. Metab. Eng., 2014, 21:26-33. |
[57] | DAHL R H, ZHANG F, ALONSO-GUTIERREZ J, et al. Engineering dynamic pathway regulation using stress-response promoters[J]. Nat. Biotechnol., 2013, 31:1039-1046. |
[58] | KEASLING J D. Manufacturing molecules through metabolic engineering[J]. Science, 2010, 330:1355-1358. |
[59] | ZHANG F, CAROTHERS J M, KEASLING J D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids[J]. Nat. Biotechnol., 2013, 30:354-359. |
[60] | HOLTZ W J, KEASLING J D. Engineering static and dynamic control of synthetic pathways[J]. Cell, 2010, 140:19-23. |
[61] | CHAO R, YUAN Y, ZHAO H. Building biological foundries for next-generation synthetic biology[J]. Sci. China. Life Sci. 2015. doi:10.1007/s11427-015-4866-8. |
[62] | YUAN L Z, ROUVIERE P E, LAROSSA R A, et al. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli[J]. Metab. Eng., 2006, 8:79-90. |
[1] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[2] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[3] | Xue LIU, Lijuan ZHANG, Guangrong ZHAO. Commensalistic Escherichia coli coculture for biosynthesis of daidzein [J]. CIESC Journal, 2022, 73(9): 4015-4024. |
[4] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[5] | Jingnan WANG, Jian PANG, Lei QIN, Chao GUO, Bo LYU, Chun LI, Chao WANG. Breeding and modification strategies of butenyl-spinosyn high-yield strains [J]. CIESC Journal, 2022, 73(2): 566-576. |
[6] | Ming HUANG, Liang ZHU, Zixia DING, Yiting MAO, Zhongqing MA. Synergistic interactions of biomass three-component and low-density polyethylene during co-catalytic fast pyrolysis for the production of light aromatics [J]. CIESC Journal, 2022, 73(2): 699-711. |
[7] | Yi SUN, Teng ZHANG, Bo LYU, Chun LI. Improvement for fine regulation of microbial cell factory by intracellular biosensors [J]. CIESC Journal, 2022, 73(2): 521-534. |
[8] | Xinye HUANG, Ye ZHANG, Shuyuan ZHANG, Zhen CHEN, Tong QIU. Application of Bayesian optimization method in the production of 1,3-propanediol by Vibrio natriegens [J]. CIESC Journal, 2022, 73(11): 5039-5046. |
[9] | Haibo LIU, Nan WANG, Hongzhou LIU, Tiezhu CHEN, Jianchang LI. Effects of voltage perturbation on the activities of microorganisms and key enzymes in EAD metabolic flux [J]. CIESC Journal, 2022, 73(10): 4603-4612. |
[10] | Xinhui WANG, Ying WANG, Mingdong YAO, Wenhai XIAO. Research progress of vitamin A biosynthesis [J]. CIESC Journal, 2022, 73(10): 4311-4323. |
[11] | Wulin ZHOU, Huifang GAO, Yuling WU, Xian ZHANG, Meijuan XU, Taowei YANG, Minglong SHAO, Zhiming RAO. Engineering of Saccharomyces cerevisiae for biosynthesis of campesterol [J]. CIESC Journal, 2021, 72(8): 4314-4324. |
[12] | MAO Jinzhu, XIAO Shuling, YANG Zhichun, WANG Xiaoyu, ZHANG Shi, CHEN Junhong, XIE Jisheng, CHEN Fude, HUANG Zinuo, FENG Tianyu, ZHANG Aihui, FANG Baishan. Application of synthetic biology in pesticides residues detection [J]. CIESC Journal, 2021, 72(5): 2413-2425. |
[13] | WANG Xin, ZHAO Peng, LI Qingyang, TIAN Pingfang. Research advances in semiconductor synthetic biology [J]. CIESC Journal, 2021, 72(5): 2426-2435. |
[14] | Nan SU, Yinan WU, Yinyee TAN, Lihua JIN, Chong ZHANG, Aikawa SHIMPEI, Hasunuma TOMOHISA, Kondo AKIHIKO, Xinhui XING. Comparative omics study of Spirulinaplatensis mutants based on ARTP mutagenesis breeding system [J]. CIESC Journal, 2021, 72(12): 6298-6310. |
[15] | ZHAO Zhenyao, ZHANG Baocai, LI Feng, SONG Hao. Design and construction of exoelectrogens by synthetic biology [J]. CIESC Journal, 2021, 72(1): 468-482. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||