[1] |
MANZANO-AGUGLIARO F, ALCAYDE A, MONTOYA F G, et al. Scientific production of renewable energies worldwide:an overview[J]. Renewable and Sustainable Energy Reviews, 2013, 18:134-143.
|
[2] |
WONG K V, TAN N. Feasibility of using more geothermal energy to generate electricity[J]. Journal of Energy Resources Technology, 2015, 137(4):041201-1-041201-6.
|
[3] |
SHORTALL R, DAVIDSDOTTIR B, AXELSSON G. Geothermal energy for sustainable development:a review of sustainability impacts and assessment frameworks[J]. Renewable and Sustainable Energy Reviews, 2015, 44:391-406.
|
[4] |
FINSTER M, CLARK C, SCHROEDER J, et al. Geothermal produced fluids:characteristics, treatment technologies, and management options[J]. Renewable and Sustainable Energy Reviews, 2015, 50:952-966.
|
[5] |
REGENSPURG S, FELDBUSCH E, BYRNE J, et al. Mineral precipitation during production of geothermal fluid from a Permian Rotliegend reservoir[J]. Geothermics, 2015, 54:122-135.
|
[6] |
刘明言. 地热流体的腐蚀与结垢控制现状[J]. 新能源进展, 2015, 3(1):38-46. DOI:10.3969/j.issn.2095-560X.2015.01.007. LIU M Y. A review on controls of corrosion and scaling in geothermal fluids[J]. Advances in New and Renewable Energy, 2015, 3(1):38-46. DOI:10.3969/j.issn.2095-560X.2015.01.007.
|
[7] |
ZHAO Q, LIU Y, MÜLLER S H. Effect of surface free energy on the adhesion of biofouling and crystalline fouling[J]. Chemical Engineering Science, 2005, 60(17):4858-4865.
|
[8] |
张帆, 刘明言, ZHANG S, 等. 不同涂层在地热水中的腐蚀与结垢[J]. 太阳能学报, 2015, 36(2):510-516. ZHANG F, LIU M Y, ZHANG S, et al. Corrosion and fouling of different coatings in geothermal water[J]. Acta Energiae Solaris Sinica, 2015, 36(2):510-516.
|
[9] |
刘明言, MALAYERI M R, MÜLLER S H. 功能氧化物薄膜液相沉积制备及应用研究进展[J]. 化工进展, 2009, 28(2):272-277. DOI:10.16085/j.issn.1000-6613.2009.02.031. LIU M Y, MALAYERI M R, MÜLLER S H. Progress of preparations and applications of functional oxide coatings fabricated by liquid phase deposition[J]. Chemical Industry and Engineering Progress, 2009, 28(2):272-277. DOI:10.16085/j.issn.1000-6613.2009.02.031.
|
[10] |
KELLER F, HUNTER M S, ROBINSON D L. Structural features of oxide coatings on aluminum[J]. Electrochem. Soc., 1953, 100(9):411-419.
|
[11] |
MASUDA H, FUKUDA K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J]. Science, 1995, 268(5216):1466-1468.
|
[12] |
ZWILLING V, AUCOUTURIER M, DARQUE-CERETTI E. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach[J]. Electrochimica Acta, 1999, 45(6):921-929.
|
[13] |
MOR G K, VARGHESE O K, PAULOSE M, et al. A review on highly ordered vertically oriented TiO2 nanotubes arrays:fabrication, material properties, and solar energy applications[J]. Solar Energy Materials & Solar Cells, 2006, 90:2011-2075.
|
[14] |
SHANKAR K, BASHAM J I, ALLAM N K, et al. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry[J]. Journal of Physical Chemistry C, 2009, 113(16):6327-6359.
|
[15] |
KOWALSKI D, KIM D, SCHMUKI P. TiO2 nanotubes, nanochannels and mesosponge:self-organized formation and applications[J]. Nano Today, 2013, 8(3):235-264.
|
[16] |
GONG D, GRIMES C A, VARGHES O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research, 2001, 16(12):3331-3334. DOI:10.1557/JMR. 2001.0457.
|
[17] |
JAN M M, HIROAKI T, PATRIK S. High-aspect-ratio TiO2 nanotubes by anodization of titanium[J]. Angewandte Chemie International Edition, 2005, 44:2100-2102.
|
[18] |
TSUCHIYA H, MACAK M, TAVEIRA L, et al. Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes[J]. Electrochemistry Communications, 2005, 7(6):576-580.
|
[19] |
FÁBIO D A, AARÃO R, BADIALI J P, et al. Modeling growth of organized nanoporous structures by anodic oxidation[J]. Langmuir, 2012, 28(36):13034-13041.
|
[20] |
LIU Y, WANG D A, CAO L X, et al. Structural engineering of highly ordered TiO2 nanotube array by periodic anodization of titanium[J]. Electrochemistry Communications, 2012, 23:68-71.
|
[21] |
XIAO P, ZHANG Y H, GARCIA B B, et al. Nanostructured electrode with titania nanotube arrays:fabrication, electrochemical properties, and applications for biosensing[J]. Journal of Nanoscience and Nanotechnology, 2009, 9(4):2426-2436.
|
[22] |
陈粤, 刘俊威, 莫冬传, 等. 超疏水纳米结构表面池沸腾特性[J]. 工程热物理学报, 2011, 32(4):634-636. CHEN Y, LIU J W, MO D C, et al. Pool boiling performance of superhydrophobic nanostructured interface[J]. Journal of Engineering Thermophysics, 2011, 32(4):634-636.
|
[23] |
MOHAN L, ANANDAN C, RAJENDRAN N. Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4V in Hanks' solution for biomedical applications[J]. Electrochimica Acta, 2015, 155:411-420.
|
[24] |
漆海清, 朱燕峰, 张娟, 等. TiO2 纳米管阵列膜的制备及对304不锈钢的光生阴极保护效应[J]. 功能材料, 2012, 43(9):1147-1150. QI H Q, ZHU Y F, ZHANG J, et al. Study on the TiO2 nanotube array films for photocathodic protection of 304 stainless steel[J]. Journal of Functional Materials, 2012, 43(9):1147-1150.
|
[25] |
GURRAPPA I. Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications[J]. Materials Characterization, 2003, 51(2/3):131-139.
|
[26] |
GOPAL J, GEORGE R P, MURALEEDHARAN P, et al. Heat treated anodized titanium surfaces showing enhanced photocatalytic inhibition of microbial foulin[J]. Surface Engineering, 2007, 23(3):194-200.
|
[27] |
RAZA M A, KOOIJ S, POELSEMA B. Superhydrophobic surfaces by anomalous fluoroalkylsilane self-assembly on silica nanosphere arrays[J]. Langmuir, 2010, 26(15):12962-12972.
|
[28] |
ZHENG Y S, HE Y, QING Y Q, et al. Formation of SiO2/polytetrafluoroethylene hybrid superhydrophobic coating[J]. Applied Surface Science, 2012, 258:9859-9863.
|
[29] |
周伟东. 地热水板式换热器微纳米涂层表面防腐防垢性能研究[D]. 天津:天津大学, 2012. ZHOU W D. Fouling and corrosion inhibition properties of nano- and micrometer coatings on plate heat exchanger in geothermal water[D]. Tianjin:Tianjin University, 2012.
|
[30] |
HELALIZADEH A, MÜLLER S H, JAMIALAHMADI M. Application of fractal theory for characterisation of crystalline deposits[J]. Chemical Engineering Science, 2006, 61(6):2069-2078.
|
[31] |
SHE Z X, LI Q, WANG Z W, et al. Highly anticorrosion, self-cleaning superhydrophobic Ni-Co surface fabricated on AZ91D magnesium alloy[J]. Surface & Coatings Technology, 2014, 251:7-14.
|
[32] |
FENG L B, CHE Y H, LIU Y H, et al. Fabrication of superhydrophobic aluminium alloy surface with excellent corrosion resistance by a facile and environment-friendly method[J]. Applied Surface Science, 2013, 283:367-374.
|
[33] |
YU Q Y, ZENG Z X, ZHAO W J, et al. Fabrication of adhesive superhydrophobic Ni-Cu-P alloy coatings with high mechanical strength by one step electrodeposition[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2013, 427:1-6.
|