[1] |
陈光文, 赵玉潮, 乐军, 等. 微化工过程中的传递现象[J]. 化工学报, 2013, 64(1):63-75. CHEN G W, ZHAO Y C, YUE J, et al. Transport phenomena in micro-chemical engineering[J]. CIESC Journal, 2013, 64(1):63-75.
|
[2] |
FU T T, MA Y G, FUNFSCHILLING D, et al. Breakup dynamics of slender bubbles in non-Newtonian fluids in microfluidic flow-focusing devices[J]. AIChE Journal, 2012, 58(11):3560-3567.
|
[3] |
TAN J, ZHANG J S, LU Y C, et al. Process intensification of catalytic hydrogenation of ethylanthraquinone with gas-liquid microdispersion[J]. AIChE Journal, 2012, 58(5):1326-1335.
|
[4] |
白璐, 朱春英, 付涛涛, 等. 并行微通道内气液相分配规律[J]. 化工学报, 2014, 65(1):108-115. BAI L, ZHU C Y, FU T T, et al. Gas-liquid flow distribution of parallel microchannels[J]. CIESC Journal, 2014, 65(1):108-115.
|
[5] |
张沁丹, 付涛涛, 朱春英, 等. 十字聚焦型微通道内弹状液滴在黏弹性流体中的生成与尺寸预测[J]. 化工学报, 2016, 67(2):504-511. ZHANG Q D, FU T T, ZHU C Y, et al. Formation and size prediction of slug droplet in viscoelastic fluid in flow-focusing microchannel[J]. CIESC Journal, 2016, 67(2):504-511.
|
[6] |
YUE J, CHEN G W, YUAN Q, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J]. Chemical Engineering Science, 2007, 62(7):2096-2108.
|
[7] |
ZHENG C, ZHAO B C, WANG K, et al. Determination of kinetics of CO2 absorption in solutions of 2-amino-2-methyl-1-propanol using a microfluidic technique[J]. AIChE Journal, 2015, 61(12):4358-4366.
|
[8] |
SHAKERIAN F, KIM K H, SZULEJKO J E, et al. A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture[J]. Applied Energy, 2015, 148:10-22.
|
[9] |
YE C B, CHEN G W, YUAN Q. Process characteristics of CO2 absorption by aqueous monoethanolamine in a microchannel reactor[J]. Chinese Journal of Chemical Engineering, 2012, 20(1):111-119.
|
[10] |
VAN BATEN J M, KRISHNA R. CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries[J]. Chemical Engineering Science, 2004, 59(12):2535-2545.
|
[11] |
PAN Z Q, ZHANG X B, XIE Y F, et al. Instantaneous mass transfer under gas-liquid Taylor flow in circular capillaries[J]. Chemical Engineering & Technology, 2014, 37(3):495-504.
|
[12] |
ZHU C Y, LI C F, GAO X Q, et al. Taylor flow and mass transfer of CO2 chemical absorption into MEA aqueous solutions in a T-junction microchannel[J]. International Journal of Heat and Mass Transfer, 2014, 73:492-499.
|
[13] |
SHAO N, GAVRIILIDIS A, ANGELI P. Mass transfer during Taylor flow in microchannels with and without chemical reaction[J]. Chemical Engineering Journal, 2010, 160(3):873-881.
|
[14] |
LUO R, WANG L. Liquid velocity distribution in slug flow in a microchannel[J]. Microfluidics and Nanofluidics, 2012, 12(1/2/3/4):581-595.
|
[15] |
VERSTEEG G F, VAN SWAALJ W. Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions[J]. Journal of Chemical and Engineering Data, 1988, 33(1):29-34.
|
[16] |
DANCKWERTS P V, LANNUS A. Gas-liquid reactions[J]. Journal of the Electrochemical Society, 1970, 117(10):369C-370C.
|
[17] |
TAMIMI A, RINKER E B, SANDALL O C. Diffusion coefficients for hydrogen sulfide, carbon dioxide, and nitrous oxide in water over the temperature range 293-368 K[J]. Journal of Chemical and Engineering Data, 1994, 39(2):330-332.
|
[18] |
FU T T, MA Y G, FUNFSCHILLING D, et al. Gas-liquid flow stability and bubble formation in non-Newtonian fluids in microfluidic flow-focusing devices[J]. Microfluidics and Nanofluidics, 2011, 10(5):1135-1140.
|
[19] |
KASHID M N, AGAR D W, TUREK S. CFD modelling of mass transfer with and without chemical reaction in the liquid-liquid slug flow microreactor[J]. Chemical Engineering Science, 2007, 62(18/19/20):5102-5109.
|
[20] |
YUE J, LUO L A, GONTHIER Y, et al. An experimental study of air-water Taylor flow and mass transfer inside square microchannels[J]. Chemical Engineering Science, 2009, 64(16):3697-3708.
|
[21] |
LI C F, ZHU C Y, MA Y G, et al. Experimental study on volumetric mass transfer coefficient of CO2 absorption into MEA aqueous solution in a rectangular microchannel reactor[J]. International Journal of Heat and Mass Transfer, 2014, 78:1055-1059.
|
[22] |
YAO C Q, DONG Z Y, ZHAO Y C, et al. Gas-liquid flow and mass transfer in a microchannel under elevated pressures[J]. Chemical Engineering Science, 2015, 123:137-145.
|
[23] |
WHITMAN W G. The two film theory of gas absorption[J]. International Journal of Heat and Mass Transfer, 1962, 5(5):429-433.
|
[24] |
YANG L, TAN J, WANG K, et al. Mass transfer characteristics of bubbly flow in microchannels[J]. Chemical Engineering Science, 2014, 109:306-314.
|
[25] |
CHARPENTIER J-C. Mass-transfer rates in gas-liquid absorbers and reactors[J]. Advances in Chemical Engineering, 1981, 11:1-133.
|
[26] |
DLUSKA E, WRONSKI S, RYSZCZUK T. Interfacial area in gas-liquid Couette-Taylor flow reactor[J]. Experimental Thermal and Fluid Science, 2004, 28(5):467-472.
|
[27] |
TAN J, LÜ Y C, XU J H, et al. Mass transfer characteristic in the formation stage of gas-liquid segmented flow in microchannel[J]. Chemical Engineering Journal, 2012, 185/186:314-320.
|
[28] |
NIU H N, PAN L W, SU H J, et al. Flow pattern, pressure drop, and mass transfer in a gas-liquid concurrent two-phase flow microchannel reactor[J]. Industrial & Engineering Chemistry Research, 2009, 48(3):1621-1628.
|
[29] |
GANAPATHY H, SHOOSHTARI A, DESSIATOUN S, et al. Hydrodynamics and mass transfer performance of a microreactor for enhanced gas separation processes[J]. Chemical Engineering Journal, 2015, 266:258-270.
|