CIESC Journal ›› 2016, Vol. 67 ›› Issue (S2): 1-13.DOI: 10.11949/j.issn.0438-1157.20160960
Previous Articles Next Articles
ZHANG Zhili, YANG Rendang
Received:
2016-05-09
Revised:
2016-07-06
Online:
2016-12-30
Published:
2016-12-30
Supported by:
supported by the State Key Laboratory of Pulp and Paper Engineering (2015ZD04).
张志礼, 杨仁党
通讯作者:
杨仁党
基金资助:
华南理工大学制浆造纸工程国家重点实验室自主创新研究基金团队项目(2015ZD04)。
CLC Number:
ZHANG Zhili, YANG Rendang. Preparation and application of biomass-based graphene composites[J]. CIESC Journal, 2016, 67(S2): 1-13.
张志礼, 杨仁党. 生物质基石墨烯复合材料的综述[J]. 化工学报, 2016, 67(S2): 1-13.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20160960
[1] | SINGH V, JOUNG D, ZHAI L, et al.Graphene based materials: past, present and future[J].Progress in Materials Science, 2011, 56(8): 1178-1271. |
[2] | LEE C, WEI X, KYSAR J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science, 2008, 321(5887): 385-388. |
[3] | MAYOROV A S, GORBACHEV R V, MOROZOV S V, et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J].Nano Letters, 2011, 11(6): 2396-2399. |
[4] | BUNCH J S, VERBRIDGE S S, ALDEN J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462. |
[5] | KIM Y, AN T K, KIM J, et al.A composite of a graphene oxide derivative as a novel sensing layer in an organic field-effect transistor[J].Journal of Materials Chemistry C, 2014, 2(23): 4539-4544. |
[6] | PONNAMMA D, GUO Q, KRUPA I, et al.Graphene and graphitic derivative filled polymer composites as potential sensors[J].Physical Chemistry Chemical Physics, 2015, 17(6): 3954-3981. |
[7] | 高玉荣,黄培,孙佩佩,等.石墨烯/纤维素复合材料的制备及应用[J].化学进展, 2016,28(5):647-656. GAO Y R,HUANG P,SUN P P, et al.Preparation and application of graphene/cellulose composites[J].Progress in Chemistry, 2016, 28(5): 647-656. |
[8] | CHOWDHURY I, DUCH M C, MANSUKHANI N D, et al. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment[J]. Environmental Science & Technology, 2013, 47(12): 6288-6296. |
[9] | WANG Y, HUANG R, LIANG G, et al.MRI-isualized, dual-argeting, combined tumor therapy using magnetic graphene-ased mesoporous silica[J].Small, 2014, 10(1): 109-116. |
[10] | REN P G, YAN D X, CHEN T, et al.Improved properties of highly oriented graphene/polymer nanocomposites[J]. Journal of Applied Polymer Science, 2011, 121(6): 3167-3174. |
[11] | REN P G, YAN D X, JI X, et al.Temperature dependence of graphene oxide reduced by hydrazine hydrate[J]. Nanotechnology, 2010, 22(5): 055705. |
[12] | REN P G, WANG H, HUANG H D, et al.Characterization and performance of dodecyl amine functionalized graphene oxide and dodecyl amine functionalized graphene/high-ensity polyethylene nanocomposites: a comparative study[J]. Journal of Applied Polymer Science, 2014, 131(2). |
[13] | WANG H, REN P G, CHEN Y H, et al.Effects of dodecyl amine functionalized graphene oxide on the crystallization behavior of isotactic polypropylene[J].Journal of Applied Polymer Science, 2014, 131(6). |
[14] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
[15] | BIRO L P, NEMES-INCZE P, LAMBIN P.Graphene: nanoscale processing and recent applications[J].Nanoscale, 2012, 4(6): 1824-1839. |
[16] | GUO S, DONG S.Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications[J].Chemical Society Reviews, 2011, 40(5): 2644-2672. |
[17] | SHIVRAMAN S, BARTON R A, YU X, et al.Free-standing epitaxial graphene[J].Nano letters, 2009, 9(9): 3100-3105. |
[18] | BAE S, KIM H, LEE Y, et al.Roll-to-roll production of 30-inch graphene films for transparent electrodes[J].Nature Nanotechnology, 2010, 5(8): 574-578. |
[19] | LI X, CAI W, AN J, et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314. |
[20] | RANA K, SINGH J, AHN J H.A graphene-based transparent electrode for use in flexible optoelectronic devices[J].Journal of Materials Chemistry C, 2014, 2(15): 2646-2656. |
[21] | LI L, WU Z, YUAN S, et al.Advances and challenges for flexible energy storage and conversion devices and systems[J].Energy & Environmental Science, 2014, 7(7): 2101-2122. |
[22] | ZHONG Y L, TIAN Z, SIMON G P, et al.Scalable production of graphene via wet chemistry: progress and challenges[J]. Materials Today, 2015, 18(2): 73-78. |
[23] | PATON K R, VARRLAE, BACKES C, et al.Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J].Nature Materials, 2014, 13(6): 624-630. |
[24] | CIESIELSKI A, SAMORI P.Graphene via sonication assisted liquid-phase exfoliation[J].Chemical Society Reviews, 2014, 43(1): 381-398. |
[25] | PARVEZ K, LI R, PUNIREDD S R, et al. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics[J].ACS nano, 2013, 7(4): 3598-3606. |
[26] | LI Y, CHOPRA N.Progress in large-scale production of graphene(Ⅰ): Chemical methods[J].JOM, 2015, 67(1): 34-43. |
[27] | XU C, XU B, GU Y, et al.Graphene-based electrodes for electrochemical energy storage[J].Energy & Environmental Science, 2013, 6(5): 1388-1414. |
[28] | EDWARDS R S, COLEMAN K S.Graphene synthesis: relationship to applications[J].Nanoscale, 2013, 5(1): 38-51. |
[29] | CHANG H, WU H.Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications[J]. Energy & Environmental Science, 2013, 6(12): 3483-3507. |
[30] | LI X, ZHANG G, BAI X, et al.Highly conducting graphene sheets and Langmuir-Blodgett films[J].Nature Nanotechnology, 2008, 3(9): 538-542. |
[31] | ZHANG Y, ZHANG L, ZHOU C.Review of chemical vapor deposition of graphene and related applications[J].Accounts of Chemical Research, 2013, 46(10): 2329-2339. |
[32] | YAN K, FU L E I, PENG H, et al.Designed CVD growth of graphene via process engineering[J].Accounts of Chemical Research, 2013, 46(10): 2263-2274. |
[33] | SUN P, KUGA S, WU M, et al.Exfoliation of graphite by dry ball milling with cellulose[J].Cellulose, 2014, 21(4): 2469-2478. |
[34] | CHENJ, DUAN M, CHEN G.Continuous mechanical exfoliation of graphene sheets via three-roll mill[J].Journal of Materials Chemistry, 2012, 22(37): 19625-19628. |
[35] | NOVOSELOV K S, FAL V I, COLOMBO L, et al.A roadmap for graphene[J].Nature, 2012, 490(7419): 192-200. |
[36] | HERNANDEZ Y, NICOLOSI V, LOTYA M, et al.High-yield production of graphene by liquid-phase exfoliation of graphite[J].Nature Nanotechnology, 2008, 3(9): 563-568. |
[37] | XIA Z Y, PEZZINI S, TREOSSI E, et al.The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study[J]. Advanced Functional Materials, 2013, 23(37): 4684-4693. |
[38] | YANG X, TU Y, LI L, et al.Well-dispersed chitosan/graphene oxide nanocomposites[J].ACS applied Materials & Interfaces, 2010, 2(6): 1707-1713. |
[39] | ZHANG X, LIU X, ZHENG W, et al.Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution[J].Carbohydrate Polymers, 2012, 88(1): 26-30. |
[40] | YADAV M, RHEE K Y, JUNG I H, et al.Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film[J].Cellulose, 2013, 20(2): 687-698. |
[41] | KABIRI R, NAMAZI H.Nanocrystalline cellulose acetate (NCCA)/graphene oxide (GO) nanocomposites with enhanced mechanical properties and barrier against water vapor[J].Cellulose, 2014, 21(5): 3527-3539. |
[42] | BALDINO L, SARNO M, CARDEA S, et al.Formation of cellulose acetate-graphene oxide nanocomposites by supercritical CO2 assisted phase inversion[J].Industrial & Engineering Chemistry Research, 2015, 54(33): 8147-8156. |
[43] | DE MORAES A C M, ANDRADE P F, et al.Fabrication of transparent and ultraviolet shielding composite films based on graphene oxide and cellulose acetate[J].Carbohydrate Polymers, 2015, 123: 217-227. |
[44] | YAN C Y, REN P G, ZHANG Z P, et al.In-situ preparation and characterization of highly oriented graphene oxide/cellulose-poly(butylene succinate) ternary composite films[J].Cellulose, 2015, 22(2): 1243-1251. |
[45] | LI L, SUN L, DOU T, et al.Method for preparing cellulose-graphene oxide-carbon nanotube ternary complex film that is utilized in super capacitor, involves adding cellulose to ionic liquid, preparing dispersed liquid, followed by filtering and drying:104064375-A[P]. |
[46] | KIM C J, KHAN W, KIM D H, et al.Graphene oxide/cellulose composite using NMMO monohydrate[J]. Carbohydrate Polymers, 2011, 86(2): 903-909. |
[47] | 王广静, 徐长妍, 朱赛玲, 等.氧化石墨烯/纳米纤维素复合薄膜的制备及表征[J].包装工程, 2014, 35(13): 1-7. WANG G J,XU C Y,ZHU S L, et al.Preparation and characterization of graphene oxide/nano cellulose composite film[J].Packaging Engineering, 2014, 35(13): 1-7. |
[48] | HAN D, YAN L, CHEN W, et al.Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature[J].Carbohydrate Polymers, 2011, 83(2): 966-972. |
[49] | DANG L N, SEPPALA J.Electrically conductive nanocellulose/graphene composites exhibiting improved mechanical properties in high-moisture condition[J]. Cellulose, 2015, 22(3): 1799-1812. |
[50] | CHEN Y, CHEN L, BAI H, et al.Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification[J].Journal of Materials Chemistry A, 2013, 1(6): 1992-2001. |
[51] | ZHANG H, ZHAI D, HE Y.Graphene oxide/polyacrylamide/carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: preparation, characterization and the swelling behavior[J].RSC Advances, 2014, 4(84): 44600-44609. |
[52] | ZHANG J, CAO Y, FENG J, et al.Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels[J].The Journal of Physical Chemistry C, 2012, 116(14): 8063-8068. |
[53] | XU M, HUANG Q, WANG X, et al.Highly tough cellulose/graphene composite hydrogels prepared from ionic liquids[J]. Industrial Crops and Products, 2015, 70: 56-63. |
[54] | JAVADI A, ZHENG Q, PAYEN F, et al.Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels[J].ACS Applied Materials & Interfaces, 2013, 5(13): 5969-5975. |
[55] | CHENG C, WANG J, YANG X, et al.Adsorption of Ni(Ⅱ) and Cd(Ⅱ) from water by novel chelating sponge and the effect of alkali-earth metal ions on the adsorption[J]. Journal of Hazardous Materials, 2014, 264: 332-341. |
[56] | LU Q F, HUANG M R, LI X G.Synthesis and heavy-metal-ion sorption of pure sulfophenylenediamine copolymer nanoparticles with intrinsic conductivity and stability[J]. Chemistry-A European Journal, 2007, 13(21): 6009-6018. |
[57] | MACHIDA M, MOCHIMARU T, TATSUMOTO H.Lead (II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution[J].Carbon, 2006, 44(13): 2681-2688. |
[58] | SUN L, YU H, FUGETSU B.Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution[J].Journal of Hazardous Materials, 2012, 203: 101-110. |
[59] | YANG Y, XIE Y, PANG L, et al.Preparation of reduced graphene oxide/poly (acrylamide) nanocomposite and its adsorption of Pb (II) and methylene blue[J].Langmuir, 2013, 29(34): 10727-10736. |
[60] | HE Y Q, ZHANG N N, WANG X D.Adsorption of graphene oxide/chitosan porous materials for metal ions[J]. Chinese Chemical Letters, 2011, 22(7): 859-862. |
[61] | YANG J, WU J X, LU Q F, et al.Facile preparation of lignosulfonate-graphene oxide-polyaniline ternary nanocomposite as an effective adsorbent for Pb(Ⅱ) ions[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(5): 1203-1211. |
[62] | LI F F, WANG X L, YUAN T Q, et al.A lignosulfonate-modified graphene hydrogel with ultrahigh adsorption capacity for Pb(ⅱ) removal[J].Journal of Materials Chemistry A, 2016, 4(30): 11888-11896. |
[63] | ZHANG C, ZHANG R Z, MA Y Q, et al.Preparation of cellulose/graphene composite and its applications for triazine pesticides adsorption from water[J].ACS Sustainable Chemistry & Engineering, 2015, 3(3): 396-405. |
[64] | LIU X, ZHOU Y, NIE W, et al.Fabrication of hydrogel of hydroxypropyl cellulose (HPC) composited with graphene oxide and its application for methylene blue removal[J]. Journal of Materials Science, 2015, 50(18): 6113-6123. |
[65] | MIANEHROW H, MOGHADAM M H M, et al.Graphene-oxide stabilization in electrolyte solutions using hydroxyethyl cellulose for drug delivery application[J].International Journal of Pharmaceutics, 2015, 484(1): 276-282. |
[66] | ZHANG X, YU H, YANG H, et al.Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution[J].Journal of Colloid and Interface Science, 2015, 437: 277-282. |
[67] | LIU X, ZHOU Y, NIE W, et al.Fabrication of hydrogel of hydroxypropyl cellulose (HPC) composited with graphene oxide and its application for methylene blue removal[J]. Journal of Materials Science, 2015, 50(18): 6113-6123. |
[68] | YAO X, YU W, XU X, et al.Amphiphilic, ultralight, and multifunctional graphene/nanofibrillated cellulose aerogel achieved by cation-induced gelation and chemical reduction[J].Nanoscale, 2015, 7(9): 3959-3964. |
[69] | HE J, HUANG Y, WANG F, WU Y.Hemostatic material used for stopping bleeding, comprises graphene and oxidized regenerated cellulose fabric filament: 104383584-A[P]. |
[70] | ZHU W, LI W, HE Y, et al.In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets[J].Applied Surface Science, 2015, 338: 22-26. |
[71] | SADASIVUNI K K, KAFY A, KIM H C, et al.Reduced graphene oxide filled cellulose films for flexible temperature sensor application[J].Synthetic Metals, 2015, 206: 154-161. |
[72] | 吴慧, 马拥军, 朱东升, 等.碳化细菌纤维素/石墨烯(CBC/CCG)复合材料的制备及电化学性能研究[J].功能材料, 2013, 44(8): 1073-1076. WU H,MA Y J,ZHU D S, et al.Preparation and electrochemical properties of carbonated bacterial cellulose/graphene(CBC/CCG) composites[J].Journal of Functional Materials, 2013, 44(8): 1073-1076. |
[73] | ZHAO H B, WANG W D, LU Q F, et al.Preparation and application of porous nitrogen-doped graphene obtained by co-pyrolysis of lignosulfonate and graphene oxide[J]. Bioresource Technology, 2015, 176: 106-111. |
[74] | KAFY A, SADASIVUNI K K, KIM H C, et al.Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites[J].Physical Chemistry Chemical Physics, 2015, 17(8): 5923-5931. |
[75] | ZHENG Q, CAI Z, MA Z, et al.Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors[J].ACS Applied Materials & Interfaces, 2015, 7(5): 3263-3271. |
[76] | RATH T, KUNDU P P.Reduced graphene oxide paper based nanocomposite materials for flexible supercapacitors[J]. RSC Advances, 2015, 5(34): 26666-26674. |
[77] | GAO K, SHAO Z, WU X, et al.Paper-based transparent flexible thin film supercapacitors[J].Nanoscale, 2013, 5(12): 5307-5311. |
[78] | OUYANG W, SUN J, MEMON J, et al.Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors[J]. Carbon, 2013, 62: 501-509. |
[79] | WENG Z, SU Y, WANG D W, et al.Graphene-cellulose paper flexible supercapacitors[J].Advanced Energy Materials, 2011, 1(5): 917-922. |
[80] | KANG Y R, LI Y L, HOU F, et al.Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage[J].Nanoscale, 2012, 4(10): 3248-3253. |
[1] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[4] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[5] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[6] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[7] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[8] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[9] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[10] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
[11] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[12] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[13] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[14] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[15] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||