[1] |
LENNOX B, HIDEN H G, MONTAGUE G A, et al. Application of multivariate statistical process control to batch operations[J]. Computers and Chemical Engineering, 2000, 24(2/3/4/5/6/7):291-296.
|
[2] |
文成林, 吕菲亚, 包哲静, 等. 基于数据驱动的微小故障诊断方法综述[J]. 自动化学报, 2016, 42(9):1285-1299. WEN C L, LÜ F Y, BAO Z J, et al. A review of data driven-based incipient fault diagnosis[J]. Acta Automatica Sinica, 2016, 42(9):1285-1299.
|
[3] |
李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1):1-9, 16. LI H, XIAO D Y. Survey on data driven fault diagnosis methods[J]. Control and Decision, 2011, 26(1):1-9, 16.
|
[4] |
于春梅, 杨胜波, 陈馨, 等. 多元统计方法在故障诊断中的应用综述[J]. 计算机工程与应用, 2007, 43(8):205-208. YU C M, YANG S B, CHEN X, et al. Survey of multivariate statistical methods for fault diagnosis[J]. Computer Engineering and Applications, 2007, 43(8):205-208.
|
[5] |
张可, 周东华, 柴毅, 等. 复合故障诊断技术综述[J].控制理论与应用, 2015, 32(9):1143-1157. ZHANG K, ZHOU D H, CHAI Y, et al. Review of multiple fault diagnosis methods[J]. Control Theory & Applications, 2015, 32(9):1143-1157.
|
[6] |
苏中鲜. 基于数据驱动的工业过程故障诊断方法综述[J]. 软件导刊, 2016, 15(3):149-150. SU Z X. Review of fault diagnosis based on data-driven in industry process[J]. Software Guide, 2016, 15(3):149-150.
|
[7] |
SCHOLKOPF B, MIKA S, BURGES C J C, et al. Input space versus feature space in kernel-based methods[J]. IEEE Transactions on Neural Networks, 1999, 10(5):1000-1016.
|
[8] |
HU W P, HU H F. Heterogeneous face recognition based on modality-independent kernel Fisher discriminant analysis joint sparse auto-encoder[J]. Electronics Letters, 2016, 52(21):1753-1755.
|
[9] |
FRANCK D. A one-class kernel fisher criterion for outlier detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(5):982-994.
|
[10] |
BO L F, WANG L, JIAO L C. Feature scaling for kernel fisher discriminant analysis using leave-one-out cross validation[J]. Neural Computation, 2006, 18(4):961-978.
|
[11] |
VAN GESTEL T, SUYKENS J A K, LANCKRIET G, et al. Bayesian framework for least-squares support vector machine classifiers, Gaussian processes, and kernel Fisher discriminant analysis[J]. Neural Computation, 2002, 14(5):1115-1147.
|
[12] |
VOLKER R. Kernel Fisher discriminants for outlier detection[J]. Neural Computation, 2006, 18(4):942-960.
|
[13] |
JIANKE Z, STEVEN C H H, MICHAEL R L. Face annotation using transductive kernel Fisher discriminant[J]. IEEE Transactions on Multimedia, 2008, 10(1):86-96.
|
[14] |
LIU Q S, LU H Q, MA S D. Improving kernel Fisher discriminant analysis for face recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(1):42-49.
|
[15] |
SANG W L, ZEUNGNAM B. Representation of a Fisher criterion function in a kernel feature space[J]. IEEE Transactions on Neural Networks, 2010, 21(2):333-339.
|
[16] |
WON K J, SAUNDERS C, PRÜGEL-BENNETT A. Evolving Fisher kernels for biological sequence classification[J]. Evolutionary Computation, 2013, 21(1):83-105.
|
[17] |
祝志博, 宋执环. 故障分离——一种基于FDA-SVDD的模式分类算法[J]. 化工学报, 2009, 60(8):2010-2016. ZHU Z B, SONG Z H. Fault isolation:an FDA-SVDD based pattern classification algorithm[J]. CIESC Journal, 2009, 60(8):2010-2016.
|
[18] |
SHI H T, LIU J C, WU Y H, et al. Fault diagnosis of nonlinear and large-scale processes using novel modified kernel Fisher discriminant analysis approach[J]. International Journal of Systems Science, 2016, 47(5):1095-1109.
|
[19] |
李锋, 王家序, 汤宝平, 等.有监督不相关局部Fisher判别分析故障诊断[J]. 振动工程学报, 2015, 8(4):657-665. LI F, WANG J X, TANG B P, et al. Fault diagnosis method based on supervised uncorrelated local Fisher discriminant analysis[J]. Journal of Vibration Engineering, 2015, 8(4):657-665.
|
[20] |
王晶, 刘莉, 曹柳林, 等. 基于核Fisher包络分析的间歇过程故障诊断[J]. 化工学报, 2014, 65(4):1317-1326. WANG J, LIU L, CAO L L, et al. Fault diagnosis based on kernel Fisher envelope surface for batch processes[J]. CIESC Journal, 2014, 65(4):1317-1326.
|
[21] |
赵旭, 阎威武, 邵惠鹤, 等. 基于核Fisher判别分析方法的非线性统计过程监控与故障诊断[J]. 化工学报, 2007, 58(4):951-956. ZHAO X, YAN W W, SHAO H H, et al. Nonlinear statistical process monitoring and fault diagnosis based on kernel Fisher discriminant analysis[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(4):951-956.
|
[22] |
苏祖强, 汤宝平, 刘自然, 等. 基于正交半监督局部Fisher判别分析的故障诊断[J]. 机械工程学报, 2014, 50(18):7-13. SU Z Q, TANG B P, LIU Z R, et al. Fault diagnosis method based on orthogonal semi-supervised local Fisher discriminant analysis[J]. Journal of Mechanical Engineering, 2014, 50(18):7-13.
|
[23] |
MIKA S, RATSCH G, WESTON J, et al. Fisher discriminant analysis with kernels[C]//Proceeding of the IEEE International Workshop on Neural Networks for Signal Processing, 1999:41-48.
|
[24] |
彭陈松. 基于核函数Fisher判别的数据分类算法研究[D]. 杭州:浙江理工大学, 2011. PENG C S. Data classification algorithm based on kernel Fisher discriminant[D]. Hangzhou:Zhejiang Sci-Tech University, 2011.
|
[25] |
王炜, 郭小明, 王淑艳, 等. 关于核函数选取的方法[J]. 辽宁师范大学学报(自然科学版), 2008, 31(1):1-4. WANG W, GUO X M, WANG S Y, et al. On the method of kernel-function selection in support vector machine[J]. Journal of Liaoning Normal University (Natural Science Edition), 2008, 31(1):1-4.
|
[26] |
武优西, 郭磊, 柴欣, 等. 基于优化算法的核函数参数选择的研究[J]. 计算机应用与软件, 2010, 27(1):137-140. WU Y X, GUO L, CHAI X, et al. On parameter selection of kernel function based on optimisation algorithm[J]. Computer Applications and Software, 2010, 27(1):137-140.
|
[27] |
张翔, 肖小玲, 徐光祐, 等. 一种确定高斯核模型参数的新方法[J]. 计算机工程, 2007, 33(12):52-53, 56. ZHANG X, XIAO X L, XU G Y, et al. A new method for determining the parameter of Gaussian kernel[J]. Computer Engineering, 2007, 33(12):52-53, 56.
|
[28] |
DAI G, YEUNG D Y, QIAN Y T. Face recognition using a kernel fractional-step discriminant analysis algorithm[J]. Pattern Recognition, 2007, 40(1):229-243.
|
[29] |
DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers and Chemical Engineering, 1993, 17(3):245-255.
|
[30] |
吕宁, 于晓洋. 基于二阶互信息特征选取的TE过程故障诊断[J]. 化工学报, 2009, 60(9):2252-2258. LÜ N, YU X Y. Fault diagnosis in TE process based on feature selection via second order mutual information[J]. CIESC Journal, 2009, 60(9):2252-2258.
|