CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1585-1594.DOI: 10.11949/0438-1157.20200871
• Process system engineering • Previous Articles Next Articles
LI Xiaochen(),SU Hongye(),XIE Lei,WANG Yiqin
Received:
2020-07-02
Revised:
2020-08-28
Online:
2021-03-05
Published:
2021-03-05
Contact:
SU Hongye
通讯作者:
苏宏业
作者简介:
李啸晨(1992—),男,博士研究生,基金资助:
CLC Number:
LI Xiaochen, SU Hongye, XIE Lei, WANG Yiqin. Research on the measurement subset selection for global self-optimizing control strategy[J]. CIESC Journal, 2021, 72(3): 1585-1594.
李啸晨, 苏宏业, 谢磊, 王一钦. 全局自优化控制策略及其测量变量子集选择[J]. 化工学报, 2021, 72(3): 1585-1594.
Add to citation manager EndNote|Ris|BibTeX
变量名称 | 物理含义 | 标称值 | 单位 |
---|---|---|---|
F1 | 进料质量流量 | 10.000 | kg/min |
F2 | 产物质量流量 | 1.334 | kg/min |
F3 | 循环质量流量 | 24.721 | kg/min |
F4 | 气相质量流量 | 8.135 | kg/min |
F5 | 冷凝液质量流量 | 8.135 | kg/min |
X1 | 进料摩尔分数 | 5.000 | % |
X2 | 产物摩尔分数 | 35.000 | % |
T1 | 进料温度 | 40.000 | ℃ |
T2 | 产物温度 | 88.400 | ℃ |
T3 | 气相温度 | 81.066 | ℃ |
L2 | 分离器液位 | 1.000 | m |
P2 | 操作压力 | 51.412 | kPa |
F100 | 蒸汽质量流量 | 9.434 | kg/min |
T100 | 蒸汽温度 | 151.520 | ℃ |
P100 | 蒸汽压力 | 400.000 | kPa |
Q100 | 热负荷 | 345.292 | kW |
Q200 | 冷却器热负荷 | 313.210 | kW |
F200 | 冷却水质量流量 | 217.738 | kg/min |
T200 | 冷却水入口温度 | 25.000 | ℃ |
T201 | 冷却水出口温度 | 45.550 | ℃ |
Table 1 Physical meanings and nominal values of the variables for the evaporation process
变量名称 | 物理含义 | 标称值 | 单位 |
---|---|---|---|
F1 | 进料质量流量 | 10.000 | kg/min |
F2 | 产物质量流量 | 1.334 | kg/min |
F3 | 循环质量流量 | 24.721 | kg/min |
F4 | 气相质量流量 | 8.135 | kg/min |
F5 | 冷凝液质量流量 | 8.135 | kg/min |
X1 | 进料摩尔分数 | 5.000 | % |
X2 | 产物摩尔分数 | 35.000 | % |
T1 | 进料温度 | 40.000 | ℃ |
T2 | 产物温度 | 88.400 | ℃ |
T3 | 气相温度 | 81.066 | ℃ |
L2 | 分离器液位 | 1.000 | m |
P2 | 操作压力 | 51.412 | kPa |
F100 | 蒸汽质量流量 | 9.434 | kg/min |
T100 | 蒸汽温度 | 151.520 | ℃ |
P100 | 蒸汽压力 | 400.000 | kPa |
Q100 | 热负荷 | 345.292 | kW |
Q200 | 冷却器热负荷 | 313.210 | kW |
F200 | 冷却水质量流量 | 217.738 | kg/min |
T200 | 冷却水入口温度 | 25.000 | ℃ |
T201 | 冷却水出口温度 | 45.550 | ℃ |
变量数量 | 最优测量变量子集 | 平均损失 |
---|---|---|
4 | [P2 T2 T3 F5] | 2.6508 |
5 | [P2 T2 T3 F100 F5] | 2.0517 |
6 | [P2 T2 T3 F100 T201 F5] | 2.0386 |
7 | [P2 T2 T3 F100 F3 F5 F1] | 1.9650 |
8 | [P2 T2 T3 F100 T201 F3 F5 F1] | 1.9361 |
9 | [P2 T2 T3 F100 T201 F3 F5 F200 F1] | 1.9188 |
10 | [P2 T2 T3 F2 F100 T201 F3 F5 F200 F1] | 1.9014 |
Table 2 Optimal subset with 4 to 10 measurements
变量数量 | 最优测量变量子集 | 平均损失 |
---|---|---|
4 | [P2 T2 T3 F5] | 2.6508 |
5 | [P2 T2 T3 F100 F5] | 2.0517 |
6 | [P2 T2 T3 F100 T201 F5] | 2.0386 |
7 | [P2 T2 T3 F100 F3 F5 F1] | 1.9650 |
8 | [P2 T2 T3 F100 T201 F3 F5 F1] | 1.9361 |
9 | [P2 T2 T3 F100 T201 F3 F5 F200 F1] | 1.9188 |
10 | [P2 T2 T3 F2 F100 T201 F3 F5 F200 F1] | 1.9014 |
1 | 丁进良, 杨翠娥, 陈远东, 等. 复杂工业过程智能优化决策系统的现状与展望[J]. 自动化学报, 2018, 44(11): 1931-1943. |
Ding J L, Yang C E, Chen Y D, et al. Research progress and prospects of intelligent optimization decision making in complex industrial process[J]. Acta Automatica Sinica, 2018, 44(11): 1931-1943. | |
2 | 柴天佑. 复杂工业过程运行优化与反馈控制[J]. 自动化学报, 2013, 39(11): 1744-1757. |
Chai T Y. Operational optimization and feedback control for complex industrial processes[J]. Acta Automatica Sinica, 2013, 39(11): 1744-1757. | |
3 | Skogestad S. Plantwide control: the search for the self-optimizing control structure[J]. Journal of Process Control, 2000, 10(5): 487-507. |
4 | Skogestad S. Control structure design for complete chemical plants[J]. Computers & Chemical Engineering, 2004, 28(1/2): 219-234. |
5 | 王平, 赵辉, 杨朝合. 基于多目标优化的两段提升管重油催化裂解自优化控制[J]. 化工学报, 2016, 67(8): 3491-3498. |
Wang P, Zhao H, Yang C H. Self-optimizing control based on multi-objective optimization for heavy oil catalytic pyrolysis in two-stage riser[J]. CIESC Journal, 2016, 67(8): 3491-3498. | |
6 | 叶凌箭, 宋执环, 马修水. 间歇过程的批间自优化控制[J]. 化工学报, 2015, 66(7): 2573-2580. |
Ye L J, Song Z H, Ma X S. Batch-to-batch self-optimizing control for batch processes[J]. CIESC Journal, 2015, 66(7): 2573-2580. | |
7 | 叶凌箭, 李英道, 宋执环. 一种构造化工过程被控变量的方法[J]. 化工学报, 2011, 62 (8): 2221-2226. |
Ye L J, Li Y D, Song Z H. New approach for constructing controlled variables for chemical processes[J]. CIESC Journal, 2011, 62 (8): 2221-2226. | |
8 | Halvorsen I J, Skogestad S, Morud J C, et al. Optimal selection of controlled variables[J]. Industrial & Engineering Chemistry Research, 2003, 42(14): 3273-3284. |
9 | Alstad V, Skogestad S. Null space method for selecting optimal measurement combinations as controlled variables[J]. Industrial & Engineering Chemistry Research, 2007, 46(3): 846-853. |
10 | Alstad V, Skogestad S, Hori E S. Optimal measurement combinations as controlled variables[J]. Journal of Process Control, 2009, 19(1): 138-148. |
11 | Kariwala V, Cao Y, Janardhanan S. Local self-optimizing control with average loss minimization[J]. Industrial & Engineering Chemistry Research, 2008, 47(4): 1150-1158. |
12 | Kariwala V. Optimal measurement combination for local self-optimizing control[J]. Industrial & Engineering Chemistry Research, 2007, 46(11): 3629-3634. |
13 | Jäschke J, Skogestad S. Optimal controlled variables for polynomial systems[J]. Journal of Process Control, 2012, 22(1): 167-179. |
14 | Jäschke J, Skogestad S. Optimal operation of heat exchanger networks with stream split: only temperature measurements are required[J]. Computers & Chemical Engineering, 2014, 70(1): 35-49. |
15 | Ye L, Cao Y, Li Y, et al. Approximating necessary conditions of optimality as controlled variables[J]. Industrial & Engineering Chemistry Research, 2013, 52(2): 798-808. |
16 | Ye L, Cao Y, Li Y, et al. A data-driven approach for selecting controlled variables[J]. IFAC Proceedings Volumes, 2012, 45(15): 904-909. |
17 | Ye L, Cao Y, Yuan X. Global approximation of self-optimizing controlled variables with average loss minimization[J]. Industrial & Engineering Chemistry Research, 2015, 54(48): 12040-12053. |
18 | Kariwala V, Skogestad S. Branch and bound methods for control structure design[J]. Computer Aided Chemical Engineering, 2006, 21(B): 1371-1376. |
19 | Cao Y, Kariwala V. Bidirectional branch and bound for controlled variable selection(Ⅰ): Principles and minimum singular value criterion[J]. Computers & Chemical Engineering, 2008, 32(10): 2306-2319. |
20 | Kariwala V, Cao Y. Bidirectional branch and bound for controlled variable selection(Ⅱ): Exact local method for self-optimizing control[J]. Computers & Chemical Engineering, 2009, 33(8): 1402-1412. |
21 | Kariwala V, Cao Y. Bidirectional branch and bound for controlled variable selection(Ⅲ): Local average loss minimization[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1): 54-61. |
22 | Kariwala V, Cao Y. Branch and bound method for multiobjective pairing selection[J]. Automatica, 2010, 46(5): 932-936. |
23 | Kariwala V, Ye L, Cao Y. Branch and bound method for regression-based controlled variable selection[J]. Computers & Chemical Engineering, 2013, 54(1): 1-7. |
24 | Yelchuru R, Skogestad S. Convex formulations for optimal selection of controlled variables and measurements using mixed integer quadratic programming[J]. Journal of Process Control, 2012, 22(6): 995-1007. |
25 | Manum H, Skogestad S. Self-optimizing control with active set changes[J]. Journal of Process Control, 2012, 22(5): 873-883. |
26 | Hu W, Umar L M, Kariwala V, et al. Local self-optimizing control with input and output constraints[J]. IFAC Proceedings Volumes, 2011, 44(1): 9850-9855. |
27 | Hu W, Umar L M, Xiao G, et al. Local self-optimizing control of constrained processes[J]. Journal of Process Control, 2012, 22(2): 488-493. |
28 | Ye L, Cao Y, Skogestad S. Global self-optimizing control for uncertain constrained process systems[J]. IFAC-Papers Online, 2017, 50(1): 4672-4677. |
29 | Skogestad S, Postlethwaite I. Multivariable Feedback Control[M]. 2nd ed. New York: John Wiley & Sons, 2005: 516. |
30 | Ye L, Cao Y, Ma X, et al. A novel hierarchical control structure with controlled variable adaptation[J]. Industrial & Engineering Chemistry Research, 2014, 53(38): 14695-14711. |
31 | Strandberg J, Skogestad S. Stabilizing operation of a 4-product integrated Kaibel column[C]//Institution of Chemical Engineers Symposium Series. Scotland: Institution of Chemical Engineers, 2006: 638-647. |
32 | Varma V A, Reklaitis G V, Blau G E, et al. Enterprise-wide modeling & optimization—an overview of emerging research challenges and opportunities[J]. Computers & Chemical Engineering, 2007, 31(5/6): 692-711. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[4] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[5] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[6] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[7] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[8] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[9] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[10] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[11] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[12] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[13] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[14] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[15] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||