[1] |
HOLLADAY J D, HU J, KING D L, et al. An overview of hydrogen production technologies[J]. Catal. Today, 2009, 139(4):244-260.
|
[2] |
王志喜, 王亚东, 张睿, 等.催化裂解制低碳烯烃技术研究进展[J].化工进展, 2013, 32(8):1818-1824. WANG Z X, WANG Y D, ZHANG R, et al. Advances of catalytic pyrolysis for producing light olefins[J]. Chemical Industry and Engineering Progress, 2013, 32(8):1818-1824.
|
[3] |
李春义, 袁起民, 陈小博, 等. 两段提升管催化裂解多产丙烯研究[J]. 中国石油大学学报(自然科学版), 2007, 31(1):118-121. LI C Y, YUAN Q M, CHEN X B, et al. Maximizing yield of propylene by two-stage-riser catalytic pyrolysis of heavy oil[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(1):118-121.
|
[4] |
ENGELL S. Feedback control for optimal process operation[J]. J. Process. Contr., 2007, 17(3):203-219
|
[5] |
CHAI T Y, QIN S J, WANG H. Optimal operational control for complex industrial processes[J]. Annu. Rev. Control., 2014, 38(1):81-92.
|
[6] |
钟伟民, 祁荣宾, 杜文莉, 等. 化工过程运行优化研究进展[J]. 化学反应工程与工艺, 2014, 30(3):281-288. ZHONG W M, QI R B, DU W L, et al. An overview on chemical process operation optimization[J]. Chem. React. Eng. Techno., 2014, 30(3):281-288.
|
[7] |
LI C Y, YANG C H, SHAN H H. Maximizing propylene yield by two-stage riser catalytic cracking of heavy oil[J]. Ind. Eng. Chem. Res., 2007, 46(14):4914-4920.
|
[8] |
刘熠斌, 赵辉, 杨朝合, 等.催化裂解条件下丙烯的二次反应[J].中国石油大学学报, 2009, 33(3):153-157. LIU Y B, ZHAO H, YANG C H, et al. Secondary reaction of propylene under conditions of catalytic pyrolysis[J]. Journal of China University of Petroleum (Edition of Natural Science), 2009, 33(3):153-157.
|
[9] |
魏晓丽, 毛安国, 张久顺, 等. 石脑油催化裂解反应特性及影响因素分析[J]. 石油炼制与化工, 2013, 44(7):1-6. WEI X L, MAO A G, ZHANG J S, et al. Study on reaction characteristics and influence factors of naphtha catalytic cracking[J]. Petroleum Processing and Petrochemicals, 2013, 44(7):1-6.
|
[10] |
YUAN Z H, WANG P, YANG C H. Steady-state multiplicity analysis of two-stage-riser catalytic pyrolysis processes[J]. Comp. Chem. Eng., 2015, 73(6):49-63.
|
[11] |
WANG P, TIAN X M, YANG C H, et al. Economics-oriented NMPC of two-stage-riser catalytic pyrolysis processes for maximizing propylene yield[J]. IFAC-Papers On-line, 2015, 48(8):32-37.
|
[12] |
MARLER R T, ARORA J S. Survey of multi-objective optimization methods for engineering[J]. Struct. Multidiscip. O., 2004, 26(6):369-395.
|
[13] |
李鸿亮, 陆金桂, 侯卫锋, 等. 基于混合遗传算法的催化重整过程多目标优化[J]. 化工学报, 2010, 61(2):432-438. LI H L, LU J G, HOU W F, et al. Multi-objective optimization based on hybrid genetic algorithm for naphtha catalytic reforming process[J]. CIESC Journal, 2010, 61(2):432-438.
|
[14] |
WANG X, TANG L. Multiobjective operation optimization of naphtha pyrolysis process using parallel differential evolution[J]. Ind. Eng. Chem. Res., 2013, 52(40):14415-14428.
|
[15] |
王平, 赵辉, 杨朝合. 基于多目标优化的两段提升管重油催化裂解自优化控制[J]. 化工学报, 2016, 67(8):3491-3498. WANG P, ZHAO H, YANG C H. Self-optimizing control based on multi-objective optimization for heavy oil catalytic pyrolysis in two-stage riser[J]. CIESC Journal, 2016, 67(8):3491-3498.
|
[16] |
LIU Y B, CHEN X B, ZHAO H, et al. Establishment of kinetic model for catalytic pyrolysis of Daqing atmospheric residue[J]. Chinese. J. Chem. Eng., 2009, 17(1):78-82.
|
[17] |
郭菊花. 重油两段催化裂解多产丙烯集总动力学模型的初步研究[D]. 青岛:中国石油大学, 2008. GUO J H. Primary study of the lumped kinetic model for heavy oil cracking into propylene by two-stage-riser technology[D]. Qingdao:China University of Petroleum, 2008.
|
[18] |
王平, 赵辉, 杨朝合. 面向过程控制的两段提升管重油催化裂解动态建模[J]. 化工学报, 2016, 67(8):3499-3506. WANG P, ZHAO H, YANG C H. Process control oriented dynamic modeling for two-stage-riser catalytic pyrolysis of heavy oil[J]. CIESC Journal, 2016, 67(8):3499-3506.
|
[19] |
MESSAC A, MATTSON C A. Generating well-distributed sets of Pareto points for engineering design using physical programming[J]. Optim. Eng., 2002, 3(4):431-450.
|
[20] |
ARBEL A, HUANG Z, RINARD I H, et al. Dynamic and control of fluidized catalytic crackers(1):Modeling of the current generation of FCC's[J]. Ind. Eng. Chem. Res., 2002, 34(4):1228-1243.
|
[21] |
PINHEIRO C I C, FERNANDES J L, DOMINGUES L, et al. Fluid catalytic cracking (FCC) process modeling, simulation, and control[J]. Ind. Eng. Chem. Res., 2012, 51(1):1-29.
|
[22] |
罗雄麟, 袁璞, 林世雄. 催化裂化装置动态机理模型(Ⅱ):再生器部分[J]. 石油学报(石油加工), 1998, 14(2):61-65. LUO X L, YUAN P, LIN S X. Dynamic model of fluid catalytic cracking unit (Ⅱ):Regenerator section[J]. Acta Petrolei Sinica (Petroleum Processing Section), 1998, 14(2):61-65.
|
[23] |
YUAN Z H, WANG P, YANG C H, et al. Systematic control structure evaluation of two-stage-riser catalytic pyrolysis processes[J]. Chem. Eng. Sci., 2015, 126(2):309-328.
|
[24] |
MATTSON C A, MULLUR A A, MESSAC A. Smart Pareto filter:obtaining a minimal representation of multiobjective design space[J]. Optim. Eng., 2004, 36(6):721-740.
|
[25] |
ANTIPOVA E, POZO C, GUILLÉN-GOSÁLBEZ G, et al. On the use of filters to facilitate the post-optimal analysis of the Pareto solutions in multi-objective optimization[J]. Comp. Chem. Eng., 2015, 74(3):48-58.
|
[26] |
RANGAIAH G P, SHARMA S, SREEPATHI B K. Multi-objective optimization for the design and operation of energy efficient chemical processes and power generation[J]. Current Opinion in Chemical Engineering, 2015, 10(11):49-62.
|
[27] |
WANG J J, JING Y Y, ZHANG C F, et al. Review on multi-criteria decision analysis aid in sustainable energy decision-making[J]. Renew. Sust. Energ. Rev., 2009, 13(9):2263-2278.
|
[28] |
DEB K. Unveiling innovative design principles by means of multiple conflicting objectives[J]. Optim. Eng., 2003, 35(35):445-470.
|
[29] |
SKOGESTAD S. Control structure design for complete chemical plants[J]. Comp. Chem. Eng., 2004, 28(1/2):219-234.
|
[30] |
YUAN Z H, ZHANG N, CHEN B Z, et al. Systematic controllability analysis for chemical processes[J]. AIChE Journal, 2012, 58(10):3096-3109.
|